光子集成電路(PIC)憑借其高帶寬、低功耗的優(yōu)勢,正成為5G基站、數(shù)據(jù)中心光模塊的核心組件。而FPGA以其靈活可編程特性,在數(shù)字信號處理、通信系統(tǒng)等領(lǐng)域占據(jù)主導(dǎo)地位。兩者的混合集成被視為突破算力與帶寬瓶頸的關(guān)鍵路徑,但技術(shù)融合過程中仍面臨多重挑戰(zhàn)。
在5G/6G通信系統(tǒng)中,自適應(yīng)調(diào)制與編碼(Adaptive Modulation and Coding, AMC)通過動態(tài)調(diào)整信號傳輸參數(shù),實現(xiàn)頻譜效率與可靠性的平衡。傳統(tǒng)AMC方案依賴瞬時信道質(zhì)量指示(CQI)映射,但在高動態(tài)場景中存在時延大、精度低的問題?;谏疃葘W(xué)習(xí)的AMC方案通過數(shù)據(jù)驅(qū)動建模,突破了傳統(tǒng)方法的性能瓶頸,成為提升通信系統(tǒng)效能的關(guān)鍵技術(shù)。
毫米波通信憑借30GHz-300GHz的頻譜資源優(yōu)勢,在5G/6G網(wǎng)絡(luò)中實現(xiàn)每秒數(shù)十G比特的數(shù)據(jù)傳輸速率,但其短波長特性導(dǎo)致信號穿透能力不足,成為制約其大規(guī)模部署的核心挑戰(zhàn)。本文聚焦毫米波穿透增強技術(shù),從材料創(chuàng)新、智能反射面、多頻段協(xié)同三大維度展開分析。
在6G通信技術(shù)向全域覆蓋、超高速率、超低時延演進的過程中,智能超表面(Reconfigurable Intelligent Surface, RIS)技術(shù)憑借其主動調(diào)控?zé)o線信道的能力,成為突破傳統(tǒng)通信瓶頸的核心突破口。該技術(shù)通過動態(tài)重構(gòu)電磁波傳播環(huán)境,為6G網(wǎng)絡(luò)構(gòu)建了“智能可控?zé)o線環(huán)境”的新范式,其系統(tǒng)設(shè)計與實現(xiàn)需攻克信道建模、硬件架構(gòu)、算法優(yōu)化三大技術(shù)維度。
在綠色通信技術(shù)蓬勃發(fā)展的當(dāng)下,數(shù)據(jù)中心作為信息社會的核心基礎(chǔ)設(shè)施,其能效提升已成為行業(yè)可持續(xù)發(fā)展的關(guān)鍵。傳統(tǒng)數(shù)據(jù)中心因設(shè)備能耗高、制冷系統(tǒng)效率低等問題,導(dǎo)致能源消耗與碳排放居高不下。本文將從硬件優(yōu)化、制冷革新、智能管理三大維度,探討數(shù)據(jù)中心能效提升的創(chuàng)新方案。
在5G向6G演進的過程中,移動通信基帶處理面臨著Tbps級傳輸速率與微秒級時延的雙重挑戰(zhàn)。傳統(tǒng)架構(gòu)受限于馮·諾依曼瓶頸,難以滿足實時信號處理需求。嵌入式FPGA憑借其動態(tài)可重構(gòu)性、低延遲并行處理能力及硬件級加速特性,成為突破基帶處理性能瓶頸的核心技術(shù)。
在5G與物聯(lián)網(wǎng)時代,頻譜資源稀缺性與設(shè)備能耗問題日益凸顯。認(rèn)知無線電(Cognitive Radio, CR)通過動態(tài)感知空閑頻譜提升利用率,但傳統(tǒng)頻譜感知算法的高能耗成為制約其大規(guī)模部署的關(guān)鍵瓶頸。本文從算法優(yōu)化、協(xié)作感知策略、硬件協(xié)同設(shè)計三個維度,探討認(rèn)知無線電頻譜感知的能耗優(yōu)化路徑。
在5G與AI算力需求激增的當(dāng)下,全球數(shù)據(jù)流量正以每年40%的速度增長,傳統(tǒng)光纖通信系統(tǒng)面臨帶寬瓶頸。波分復(fù)用(WDM)技術(shù)通過光波長復(fù)用實現(xiàn)單纖多路傳輸,成為突破帶寬限制的核心手段。本文從技術(shù)原理、系統(tǒng)架構(gòu)、關(guān)鍵策略三個維度,解析WDM技術(shù)在光通信模塊中的帶寬擴展路徑。