日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁(yè) > 單片機(jī) > 單片機(jī)
[導(dǎo)讀]  Output Compare is a powerful feature of embedded world. The PIC32 Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a

  Output Compare is a powerful feature of embedded world. The PIC32 Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation. The following are some of the key features:


?Multiple Output Compare modules in a device

?Programmable interrupt generation on compare event

?Single and Dual Compare modes

?Single and continuous output pulse generation

?Pulse-Width Modulation (PWM) mode

?Hardware-based PWM Fault detection and automatic output disable

?Programmable selection of 16-bit or 32-bit time bases

?Can operate from either of two available 16-bit time bases or a single 32-bit time base

?ADC event trigger


  At the moment, I just set the Output Compare work in PWM mode. The PWM duty is increasing by little and little at the beginning. Then PWM duty is decreasing by little and little. This application run on my PIC32MZ EC Starter Kit, and the PWM drives a LED. So you can see the LED flux is changing from dim to bright and reverse. Blow is the copy of my application code.


#include

#include

#pragma config FMIIEN = ON // Ethernet RMII/MII Enable (MII Enabled) // need a 25MHz XTAL in MII mode, a 50MHz Clock in RMII mode.

#pragma config FETHIO = ON // Ethernet I/O Pin Select (Default Ethernet I/O)

#pragma config PGL1WAY = ON // Permission Group Lock One Way Configuration (Allow only one reconfiguration)

#pragma config PMDL1WAY = ON // Peripheral Module Disable Configuration (Allow only one reconfiguration)

#pragma config IOL1WAY = ON // Peripheral Pin Select Configuration (Allow only one reconfiguration)

#pragma config FUSBIDIO = OFF // USB USBID Selection (Controlled by Port Function)

// DEVCFG2  7FF9B11A

#pragma config FPLLIDIV = DIV_3 // System PLL Input Divider (3x Divider)

#pragma config FPLLRNG = RANGE_5_10_MHZ // System PLL Input Range (5-10 MHz Input)

#pragma config FPLLICLK = PLL_POSC // System PLL Input Clock Selection (POSC is input to the System PLL)

#pragma config FPLLMULT = MUL_50 // System PLL Multiplier (PLL Multiply by 50) //PLL must output between 350 and 700 MHz

#pragma config FPLLODIV = DIV_2 // System PLL Output Clock Divider (2x Divider)

#pragma config UPLLFSEL = FREQ_24MHZ // USB PLL Input Frequency Selection (USB PLL input is 24 MHz)

#pragma config UPLLEN = OFF // USB PLL Enable (USB PLL is disabled)

// DEVCFG1  7F7F3839

#pragma config FNOSC = SPLL // Oscillator Selection Bits (System PLL)

#pragma config DMTINTV = WIN_127_128 // DMT Count Window Interval (Window/Interval value is 127/128 counter value)

#pragma config FSOSCEN = OFF // Secondary Oscillator Enable (Disable SOSC)

#pragma config IESO = OFF // Internal/External Switch Over (Disabled)

#pragma config POSCMOD = EC // Primary Oscillator Configuration (External clock mode)

#pragma config OSCIOFNC = ON // CLKO Output Signal Active on the OSCO Pin (Enabled)

#pragma config FCKSM = CSDCMD // Clock Switching and Monitor Selection (Clock Switch Disabled, FSCM Disabled)

#pragma config WDTPS = PS1048576 // Watchdog Timer Postscaler (1:1048576)

#pragma config WDTSPGM = STOP // Watchdog Timer Stop During Flash Programming (WDT stops during Flash programming)

#pragma config WINDIS = NORMAL // Watchdog Timer Window Mode (Watchdog Timer is in non-Window mode)

#pragma config FWDTEN = OFF // Watchdog Timer Enable (WDT Disabled)

#pragma config FWDTWINSZ = WINSZ_25 // Watchdog Timer Window Size (Window size is 25%)

#pragma config DMTCNT = DMT31 // Deadman Timer Count Selection (2^31 (2147483648))

#pragma config FDMTEN = OFF // Deadman Timer Enable (Deadman Timer is disabled)

// DEVCFG0  FFFFFFF7

#pragma config DEBUG = OFF // Background Debugger Enable (Debugger is disabled)

#pragma config JTAGEN = ON // JTAG Enable (JTAG Port Enabled)

#pragma config ICESEL = ICS_PGx2 // ICE/ICD Comm Channel Select (Communicate on PGEC2/PGED2)

#pragma config TRCEN = ON // Trace Enable (Trace features in the CPU are enabled)

#pragma config BOOTISA = MIPS32 // Boot ISA Selection (Boot code and Exception code is MIPS32)

#pragma config FECCCON = OFF_UNLOCKED // Dynamic Flash ECC Configuration (ECC and Dynamic ECC are disabled (ECCCON bits are writable))

#pragma config FSLEEP = OFF // Flash Sleep Mode (Flash is powered down when the device is in Sleep mode)

#pragma config DBGPER = ALLOW_PG2 // Debug Mode CPU Access Permission (Allow CPU access to Permission Group 2 permission regions)

#pragma config EJTAGBEN = NORMAL // EJTAG Boot (Normal EJTAG functionality)

// DEVCP0

#pragma config CP = OFF // Code Protect (Protection Disabled)


#define Mvec_Interrupt() INTCONSET = 0x1000; asm volatile("ei");


#define OC1_VALUE (PORTD & 0x2)

#define OC_MAX (0x7A120)

#define OC_MIN (0x0)

#define STEP_VALUE (500)


#define LED_IOCTL() TRISHCLR = (1<<0)

#define LED_SETON() LATHSET = (1<<0)

#define LED_SETOFF() LATHCLR = (1<<0)

#define LED_ONOFF() LATHINV = (1<<0)

#define LED_OPEN() ANSELH &= 0xFFFFFFFE


typedef enum _eRUN_MODE

{

Stable1,

Welcome,

Stable2,

Goodbye,

} eRUN_MODE;

eRUN_MODE LED_RunMode;


void OC1_Init(void)

{

OC1CON = 0x0000;

RPD1R = 0xC;

OC1RS = OC_MIN;

OC1R = OC_MIN;

OC1CON = 0x2E;

OC1CONSET = 0x8000; // Enable OC

}

void LED_Init(void)

{

LED_SETOFF();

LED_OPEN();

LED_IOCTL();

LED_RunMode = Stable1;

}


void T23_Init(void)

{

T2CON = 0x0;

T3CON = 0x0;

TMR2 = 0;

TMR3 = 0;

//IPC3SET = 0x50000;

IPC3SET = 0x120000;

IEC0SET = 0x4000;

IFS0CLR = 0x4000;

PR2 = 0xA120;

PR3 = 0x7;


T2CON = 0x0008;

T2CON |= 0x8000;

}

void T45_Init(void)

{

T4CON = 0;

T5CON = 0;

TMR4 = 0;

TMR5 = 0;

IPC6SET = 0x6;

IFS0CLR = 0x1000000;

IEC0SET = 0x1000000;

PR4 = 0xE100;

PR5 = 0x05F5;

T4CON = 0x0008;

T4CON |= 0x8000;

}


void LED_Scheduler(void)

{

if (OC1_VALUE == 0x2)

{

LED_SETON();

}

else

{

LED_SETOFF();

}

}


void __ISR(_TIMER_3_VECTOR,ipl4AUTO) T23_Handler(void)

{

if (LED_RunMode == Stable1)

{

; // do nothing

}

else if (LED_RunMode == Stable2)

{

; // do nothing

}

else if (LED_RunMode == Welcome)

{

OC1RS = OC1RS + STEP_VALUE;

if (OC1RS >= OC_MAX)

{

T4CON = 0x0008;

TMR4 = 0;

TMR5 = 0;

PR4 = 0xE100;

PR5 = 0x05F5;

T4CON = 0x8008;

IFS0CLR = 0x1000000;

LED_RunMode = Stable2;

}

}

else // LED_RunMode == Goodbye

{

OC1RS = OC1RS - STEP_VALUE;

if (OC1RS == OC_MIN)

{

T4CON = 0x0008;

TMR4 = 0;

TMR5 = 0;

PR4 = 0xE100;

PR5 = 0x05F5;

T4CON = 0x8008;

IFS0CLR = 0x1000000;

LED_RunMode = Stable1;

}

}

TMR2 = 0;

TMR3 = 0;

IFS0CLR = 0x4000;

Nop();

}

void __ISR(_TIMER_5_VECTOR,ipl1AUTO) T45_Handler(void)

{

if (LED_RunMode == Stable1)

{

LED_RunMode = Welcome;

//PR5 = 0x98;

PR4 = 0x9680;

PR5 = 0x98;

}

else if (LED_RunMode == Welcome)

{

; // do nothing

}

else if (LED_RunMode == Stable2)

{

LED_RunMode = Goodbye;

//PR5 = 0x98;

PR4 = 0x9680;

PR5 = 0x98;

}

else // LED_RunMode == Goodbye

{

; // do nothing

}

TMR4 = 0;

TMR5 = 0;

IFS0CLR = 0x1000000;

Nop();

}

void main(void)

{

LED_Init();

OC1_Init();

T23_Init();

T45_Init();

Mvec_Interrupt();

while(1)

{

LED_Scheduler();

}

}


本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問(wèn)題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問(wèn)題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問(wèn)題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉