日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 測試測量 > 測試測量
[導讀]在無線通信高度發(fā)達的今天,干擾絕對是不受歡迎的東西,它可能會導致噪聲、手機通話中斷、通信受到干擾。在蜂窩網(wǎng)絡中,干擾實際上是網(wǎng)絡的一部分。雖然當前越來越多的網(wǎng)絡內置了干擾檢測功能,但這些工具通常效果不大,因為它們只針對幾種信號,可能只能在一條通道上測量問題的影響。

 在無線通信高度發(fā)達的今天,干擾絕對是不受歡迎的東西,它可能會導致噪聲、手機通話中斷、通信受到干擾。在蜂窩網(wǎng)絡中,干擾實際上是網(wǎng)絡的一部分。雖然當前越來越多的網(wǎng)絡內置了干擾檢測功能,但這些工具通常效果不大,因為它們只針對幾種信號,可能只能在一條通道上測量問題的影響。

頻譜是工程師非常信賴的工具,用以測量和識別干擾源。市場上有許多不同類型的頻譜分析儀,但許多人首選電池供電的小型頻譜分析儀,因為他們需要能夠自由移動,并把來自多個位置的數(shù)據(jù)關聯(lián)起來。

搜尋干擾頻率

在搜尋干擾時,第一個挑戰(zhàn)是確定是否可以測量干擾信號。一般來說,受擾接收機很容易確定,這也是第一個要查看的地方。挑戰(zhàn)在于,無線接收機要能檢測到非常小的信號。因此,頻譜分析儀必須設置成接近模擬受擾接收機的靈敏度,才能“看到”接收機“看到”的東西。例如,普通LTE接收機的靈敏度約為-120dBm。也就是說,接收機通道上任何大于-120dBm的射頻污染都會影響接收機的操作。

頻譜分析儀有兩種控制功能可以調節(jié)靈敏度:基準電平(RefLvl)和解析帶寬(RBW)。挑戰(zhàn)在于,在“空中”(OTA)進行測量時,基準電平必需保持得相當高(-30dBm),這樣在測量所有RF能量時,頻譜分析儀才不會過載。

在大多數(shù)頻譜分析儀中,RBW控制功能會根據(jù)用戶配置的頻寬自動設置。在OTA測量中,應降低RBW值,以查看可能影響受擾接收機的小信號。這種組合導致大多數(shù)電池供電的頻譜分析儀的掃描速率非常低,也就是說,其不可能看到導致干擾的小的間歇性瞬態(tài)信號。

分析儀解決了這個問題,它能夠使用RBW較窄的濾波器測量頻譜,速度要快于基本掃頻分析儀。圖1顯示了LTE信號在空中傳送(OTA)時的結果。在這種情況下,頻寬被設置成40 MHz,默認RBW為300 kHz。注意很難確定畫面中心的輻射。如果有一個窄帶(< 300 kHz)干擾源,那么這種設置幾乎不可能看得到干擾。

圖1:LTE信號OTA結果實例。

圖2是使用1kHz RBW濾波器的相同設置。在這種情況下,很明顯LTE通道和有效掃描時間僅提高到40 ms。這是使用實時頻譜分析儀(RTSA)測量無線通道干擾的首要好處之一。這類儀器原本十分昂貴,而且必須固定在桌面上使用,但現(xiàn)在市場上已經(jīng)有一款電池供電、基于USB的經(jīng)濟型實時頻譜分析儀,使RTS成為搜尋干擾的實用選擇。

圖2:采用1kHz RBW濾波器的實時頻譜分析儀提高了查看LTE信號的能力。

測量干擾的頻率

傳統(tǒng)上,工程師使用頻譜分析儀器提供的各種跟蹤模式,來分析關心的RF信號的特點,常見的有峰值保持模式、平均模式和最小值保持模式。即使采用這些跟蹤模式,工程師仍很難確定信號的發(fā)生頻次,或確定信號是否與相同頻寬中其他信號有什么關聯(lián)。

RTSA為這個問題提供了解決方案:具有余輝效應的快速頻譜顯示器。記住,在實時頻譜分析儀中,對最大實時頻寬以下的任何頻寬,儀器都不會進行掃描,這意味著它能夠每秒測量數(shù)萬次頻譜。但頻譜不能顯示得那么快。為解決這個問題,我們開發(fā)了配有余輝顯示器的頻譜分析儀,如圖3所示。

圖3:實時頻譜分析儀顯示器顯示的信息量要遠遠超過傳統(tǒng)顯示器。

余輝顯示器(或數(shù)字熒光顯示器)會逐點追蹤能量被測量的頻率。像素顏色表示信號存在的頻次。在溫度定標中,紅色表示信號經(jīng)常出現(xiàn),藍色則表示信號不經(jīng)常出現(xiàn)??焖兕l譜測量與余輝相結合,可以更簡便地識別偶發(fā)事件。

在使用實時顯示時,應注意選擇RBW濾波器。與普通頻譜顯示一樣,RBW濾波器的選擇大大影響著頻譜測量的速度。RTSA的主要指標之一是偵聽概率(POI)。這個指標決定著儀器保證能檢測到的最短信號時長。選擇窄RBW會改變測量的POI,這是要知道的一個重要因素。

顯示全部信號信息

與基本頻譜顯示器相比,盡管余輝顯示器可以獲得多得多的信息,但它并不能顯示全部信號信息。在現(xiàn)代無線通信中,許多協(xié)議采用了某種形式的空閑通道評估。從本質上看,這些無線電能夠確定通道忙碌程度,只在沒有其他信號使用這個頻率時才傳送信號。即使快速余輝顯示器也不能顯示兩個信號之間的關系。為確定信號的時序,我們必需使用三維頻譜圖功能,如圖4所示,繪制頻譜數(shù)據(jù)隨時間變化情況,確定信號活動的頻次。

圖4:三維頻譜圖可以記錄長期頻譜及播放問題周期。

三維頻譜圖是一種瀑布式顯示畫面,繪制頻譜相對于時間的活動情況。在普通頻譜顯示畫面中,開始頻率在左,結束頻率在右。時間是Y軸,顏色表示信號幅度:紅色表示最高幅度,黑色表示最低幅度。三維頻譜圖由余輝顯示器中峰值檢測到的數(shù)據(jù)組成,累積的頻譜數(shù)據(jù)量由用戶確定。通過這些控制功能,用戶可以記錄長期數(shù)據(jù)(幾個小時),然后導出和共享結果。這特別適合存在很難處理的干擾問題,且需要長時間監(jiān)測頻譜的情況。在處理互調制問題時,三維頻譜圖可以幫助確定基本組合元素。

請記住,在RTSA中,可以立即測量整個頻寬的頻譜信息。也就是說,我們可以使用這些數(shù)據(jù),目測實現(xiàn)載波相關,確認源載波和互調制產物之間的時序關系。

輕松搜尋干擾!

干擾永遠是無線通信領域中的不速之客。為解決這個棘手的問題,最好的方案是使用實時頻譜分析儀成為好的獵手,不管干擾信號多么難以捉摸,實時頻譜分析儀的顯示器都足以勝任工作,為您找到和顯示干擾信號。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉