日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > 消費(fèi)電子 > 消費(fèi)電子
[導(dǎo)讀]  按鍵是儀器儀表中普遍采用的人機(jī)輸入接口電路。在按鍵電路中必須考慮對(duì)按鍵的抖動(dòng)進(jìn)行軟件消抖和硬件消抖?! ∠毒哂惺褂糜布?shù)量少的優(yōu)點(diǎn),但也具有以下兩個(gè)缺點(diǎn):

  按鍵是儀器儀表中普遍采用的人機(jī)輸入接口電路。在按鍵電路中必須考慮對(duì)按鍵的抖動(dòng)進(jìn)行軟件消抖和硬件消抖。

  消抖具有使用硬件數(shù)量少的優(yōu)點(diǎn),但也具有以下兩個(gè)缺點(diǎn):

  (1)在儀器鍵盤電路中,多個(gè)按鍵安裝在儀器面板上,鍵盤的輸出通過排線連接到主控板上,此時(shí)鍵盤導(dǎo)線寄生電感和寄生電容的存在,寄生電感寄生電容和排線電阻將組成二階振蕩系統(tǒng),二階振蕩將形成負(fù)電平脈沖,而負(fù)電平脈沖很容易超出數(shù)字芯片的輸入最大允許電平范圍,導(dǎo)致數(shù)字芯片容易損壞。

  (2)按鍵閉合和斷開時(shí),電壓信號(hào)下降沿非常陡峭,劇烈變化的電壓信號(hào)將通過互容傳遞到相鄰導(dǎo)線上。

  硬件消抖電路的設(shè)計(jì)主要是要考慮以下三個(gè)因素:

  (1)消除信號(hào)的抖動(dòng),確保按鍵電路輸出信號(hào)的平整;

  (2)消除信號(hào)的下沖,因?yàn)橄聸_電平超出了后續(xù)數(shù)字芯片的最大輸入電平范圍;

  (3)降低信號(hào)變化的速度,避免在鄰線上引起容性串?dāng)_;

  (4)不影響按鍵電路的正常功能。

  常見的硬件消抖電路包括電容濾波消抖和觸發(fā)器消抖。電容濾波消抖采用電阻和電容組成低通濾波器,具有電路結(jié)構(gòu)簡(jiǎn)單可靠的優(yōu)點(diǎn),因此本文將重點(diǎn)闡述該消抖電路。

  1 按鍵消抖電路結(jié)構(gòu)與電路模型

  圖1為某儀器按鍵電路原理圖,按鍵安裝在儀器面板上,通過導(dǎo)線連接到主控板上,按鍵的一端接上拉電阻并連接后續(xù)電路,按鍵的另一端接地,當(dāng)按鍵沒有按下時(shí),按鍵輸出高電平,當(dāng)按鍵按下 時(shí),按鍵輸出低電平。圖2為加上濾波電容后的按鍵電路。

  

 

  圖1 某儀器按鍵電路

  

 

  圖2 按鍵消抖電路

  圖3為按鍵消抖電路的電路模型。圖中R0為連接按鍵導(dǎo)線的電阻,L為導(dǎo)線電感,C0為導(dǎo)線對(duì)地電容,Cf為濾波電容,Cp為按鍵后續(xù)電路的輸入電容,Ri為按鍵后續(xù)電路的輸入阻抗,R 為上拉電阻,VCC為電源電壓,U為按鍵消抖電路的輸出電壓。

  

 

  圖3 按鍵消抖電路的電路模型

  當(dāng)按鍵閉合時(shí),其等效電路模型如圖4所示。當(dāng)按鍵斷開時(shí),其等效電路模型如圖5所示。

  2 按鍵消抖電路數(shù)學(xué)模型

  設(shè)某一時(shí)刻按鍵合上,在此之前按鍵斷開,整個(gè)電路處于穩(wěn)態(tài),即各個(gè)電容和電感上沒有電流流動(dòng)。此時(shí)輸出電壓U =u0 =VCC ×R (R +Ri)。則根據(jù)圖4整個(gè)電路可列出以下微分方程:

  

 

  圖4 按鍵閉合時(shí)等效電路模型

  

 

  圖5 按鍵斷開時(shí)等效電路模型

  式中:i0為L(zhǎng) 所在支路的電流;C 為C0,Cf和 Cp的等效電容,C 為三者之和。

  (1)、式(2)進(jìn)行拉普拉斯變換后可得:

  

 

  將上式運(yùn)用留數(shù)定理分解可得:

  

 

  設(shè)某一時(shí)刻按鍵斷開,在此之前按鍵閉合,整個(gè)電路處于穩(wěn)態(tài),即各個(gè)電容和電感上沒有電流流動(dòng)。此時(shí)輸出電壓U=u0=VCC × Ri R0 (RRi +R0 Ri +RR0)。根據(jù)圖5可列出以下微分方程:

  

 

  3 按鍵電路瞬態(tài)分析

  對(duì)式(5)進(jìn)行拉普拉斯反變換便可得到按鍵斷開電路處于穩(wěn)態(tài)時(shí)按鍵閉合的輸出電壓u(t)的時(shí)域響應(yīng)。

  

 

  根據(jù)拉普拉斯變換的初值定理和終值定理,可得到:

  

[!--empirenews.page--]

 

  對(duì)式(6)進(jìn)行拉普拉斯反變換便可得到按鍵閉合電路處于穩(wěn)態(tài)時(shí)按鍵斷開的輸出電壓u(t)的時(shí)域響應(yīng)。對(duì)式(6)進(jìn)行拉普拉斯反變換便可得到按鍵閉合電路處于穩(wěn)態(tài)時(shí)按鍵斷開的輸出電壓u(t)的時(shí)域響應(yīng)。

  

 

  式(6)的時(shí)域響應(yīng)為電容充電的時(shí)域響應(yīng),其響應(yīng)過程為單調(diào)上升,其上升時(shí)間為2.2T,充電時(shí)間常數(shù)T等于ReC,Re為Ri和R 的并聯(lián)。

  T 越大上升時(shí)間越大,上升時(shí)間過大將影響按鍵的正常使用。按鍵按下一次的持續(xù)時(shí)間約為0.01~0.1 s,因此消抖電路將上升時(shí)間調(diào)整到500 μs以內(nèi)比較適合。

  現(xiàn)測(cè)得已連接到單片機(jī)輸入引腳的按鍵電路其導(dǎo)線電阻R0為1.6 Ω,導(dǎo)線電感L為25 nH,導(dǎo)線對(duì)地電容Ci+Cp為9.6 pF,在電路中使用的上拉電阻R 為10 kΩ,單片機(jī)輸入引腳輸入阻抗Re為2 MΩ,使用電源電壓VCC為3.3 V,則不加濾波電容時(shí),按鍵閉合和斷開的瞬態(tài)響應(yīng)分別如圖6 和圖7 所示,由圖6 可見下沖峰值接近2 V,而使用單片機(jī)引腳的最大輸入電壓范圍為-0.3 V~(VCC+0.3 V),該下沖電壓遠(yuǎn)遠(yuǎn)超出該電平范圍。

  

 

  圖6 實(shí)測(cè)按鍵閉合瞬間的時(shí)域響應(yīng)

  4 按鍵消抖電路設(shè)計(jì)

  按鍵消抖電路的設(shè)計(jì)主要是利用電容的平滑功能,將毛刺平滑掉,濾波電容越大,信號(hào)越平滑。但是電容的增大會(huì)導(dǎo)致上升時(shí)間過大,電容太小則無法消除毛刺?,F(xiàn)針對(duì)一單片機(jī)按鍵電路為例進(jìn)行闡述。圖8為該電路未進(jìn)行硬件消抖時(shí)使用衰減探頭在示波器上觀察到的毛刺。

  

 

  圖7 實(shí)測(cè)按鍵斷開瞬間時(shí)域響應(yīng)

  

 

  圖8 按鍵電路毛刺

  現(xiàn)測(cè)得該單片機(jī)按鍵電路寄生電感L 為30 nH,寄生電容C0+Cp為35 pF,導(dǎo)線直流電阻R0為0.2 Ω。查閱單片機(jī)數(shù)據(jù)手冊(cè),計(jì)算得到其輸入引腳輸入阻抗為2 MΩ,上拉電阻R 為10 kΩ。根據(jù)式(6)和式(7)可計(jì)算出未加濾波電容的按鍵電路在按鍵閉合時(shí)其二階系統(tǒng)的ξ為0.004 887,振蕩頻率為155.319 MHz。圖6為在示波器上觀察到的按鍵閉合瞬間的時(shí)域響應(yīng)。由圖可見最大的下沖幅度達(dá)到了-1.66 V,該電平遠(yuǎn)超出單片機(jī)的電壓范圍。

  根據(jù)式(9)可計(jì)算得到按鍵斷開時(shí)充電時(shí)間常數(shù)為348.258 7 ns,信號(hào)上升時(shí)間為766.17 ns。圖7為在示波器上觀察到的按鍵斷開瞬間時(shí)域響應(yīng)。為消除按鍵抖動(dòng),濾波電容越大越好,但電容增大將增大信號(hào)的上升時(shí)間。為不影響按鍵電路的正常功能,需將上升時(shí)間控制。在0.5 ms以內(nèi)。為此可得到當(dāng)上拉電阻為10 kΩ時(shí)濾波電容的最大值為22.85 nF,上拉電阻為1 kΩ時(shí)濾波電容的最大值為227.38 nF。

  當(dāng)濾波電容為227.38 nF時(shí),ξ值為0.275 9,ξ值小于1,當(dāng)按鍵閉合時(shí)依然會(huì)有衰減振蕩,此時(shí)的衰減振蕩頻率為1.849 8 MHz,下沖峰值約為-1.34 V,下沖持續(xù)時(shí)間約為271 ns,R=1 kΩ,Cf=227.38 nF。

  由于下沖持續(xù)時(shí)間較長(zhǎng),危害性也將增大。圖9為R=1 kΩ,濾波電容為227.38 nF時(shí)的按鍵閉合瞬間時(shí)域響應(yīng)波形。圖10為R=1 kΩ,濾波電容為220 nF時(shí)在示波器上觀察到的按鍵閉合瞬間時(shí)域響應(yīng)波形。

  

 

  圖9 按鍵閉合瞬間仿真波形

  

 

  圖10 按鍵閉合 瞬間實(shí)測(cè)波形

  因此,單靠增加電容來進(jìn)行濾波的方法是行不通的,由式(7)可知,增大R0可以顯著增加ξ,為此可以在按鍵導(dǎo)線上串接電阻。在最終的按鍵消抖電路設(shè)計(jì)中,串接電阻選為100 Ω,濾波電容為8.2 nF。此時(shí)ξ 為26.117 7,徹底消除了振蕩,此時(shí)的充電時(shí)間常數(shù)T 為81.94 μs,上升時(shí)間為180.268 μs。圖11為整個(gè)按鍵消抖電路的按鍵閉合和按鍵斷開瞬間的時(shí)域響應(yīng)波形仿真。圖12為整個(gè)按鍵消抖電路的按鍵閉合和按鍵斷開瞬間的實(shí)測(cè)時(shí)域響應(yīng)波形。圖13為一次按鍵按下實(shí)測(cè)完整波形。圖14為最終的按鍵消抖電路。由圖12可見,按鍵閉合時(shí)沒有過沖,按鍵斷開時(shí)上升時(shí)間小于0.5 ms。由圖13可見,在按鍵按下和松開之間的過程中,抖動(dòng)已被消除,而且完全不影響按鍵電路的正常功能。

  

 

  圖11 消抖電路按鍵閉合和斷開瞬間的時(shí)域響應(yīng)波形仿真

  

 

  圖12 消抖電路按鍵閉合和斷開瞬間實(shí)測(cè)時(shí)域響應(yīng)波形

  

 

  圖13 一次按鍵按下實(shí)測(cè)完整波形

  5 結(jié)語

  本文分析了軟件消抖電路中存在的不足,指出了軟件消抖存在輸出信號(hào)下沖電平超出后續(xù)數(shù)字芯片輸入電平范圍容易危害數(shù)字芯片,提出了按鍵閉合時(shí)信號(hào)下降速度過快易引起容性串?dāng)_。針對(duì)軟件消抖電路的不足,本文分析了硬件消抖電路,建立了數(shù)學(xué)模型,仿真并實(shí)測(cè)了按鍵消抖電路的時(shí)域響應(yīng)。針對(duì)硬件消抖電路中僅使用濾波電容消除按鍵抖動(dòng)的方法,通過仿真和實(shí)測(cè)闡述了該方法反而會(huì)導(dǎo)致下沖持續(xù)時(shí)間更長(zhǎng),對(duì)后續(xù)電路危害性大。

  

 

  圖14 按鍵消抖電路圖

  針對(duì)該問題,本文分析計(jì)算了在按鍵導(dǎo)線中串接電阻以消除下沖,仿真并實(shí)測(cè)了整個(gè)硬件消抖電路的瞬時(shí)響應(yīng),實(shí)測(cè)了硬件消抖電路按鍵按下和釋放整個(gè)過程的時(shí)域波形,消除了按鍵抖動(dòng)和下沖

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉