日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > 電源 > 數(shù)字電源
[導(dǎo)讀]憑借出色的性能和功耗指標(biāo),賽靈思 FPGA 成為設(shè)計(jì)人員構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)的首選 XE "" XE "" XE "" XE ""。新的軟件工具可簡化實(shí)現(xiàn)工作。人工智能正在經(jīng)歷一場變革,這要得益

憑借出色的性能和功耗指標(biāo),賽靈思 FPGA 成為設(shè)計(jì)人員構(gòu)建卷積神經(jīng)網(wǎng)絡(luò)的首選 XE "" XE "" XE "" XE ""。新的軟件工具可簡化實(shí)現(xiàn)工作。

人工智能正在經(jīng)歷一場變革,這要得益于機(jī)器學(xué)習(xí)的快速進(jìn)步。在機(jī)器學(xué)習(xí)領(lǐng)域,人們正對一類名為“深度學(xué)習(xí)”算法產(chǎn)生濃厚的興趣,因?yàn)檫@類算法具有出色的大數(shù)據(jù)集性能。在深度學(xué)習(xí)中,機(jī)器可以在監(jiān)督或不受監(jiān)督的方式下從大量數(shù)據(jù)中學(xué)習(xí)一項(xiàng)任務(wù)。大規(guī)模監(jiān)督式學(xué)習(xí)已經(jīng)在圖像識別和語音識別等任務(wù)中取得巨大成功。

深度學(xué)習(xí)技術(shù)使用大量已知數(shù)據(jù)找到一組權(quán)重和偏差值,以匹配預(yù)期結(jié)果。這個(gè)過程被稱為訓(xùn)練,并會產(chǎn)生大型模式。這激勵(lì)工程師傾向于利用專用硬件(例如 GPU)進(jìn)行訓(xùn)練和分類。

隨著數(shù)據(jù)量的進(jìn)一步增加,機(jī)器學(xué)習(xí)將轉(zhuǎn)移到云。大型機(jī)器學(xué)習(xí)模式實(shí)現(xiàn)在云端的 CPU 上。盡管 GPU 對深度學(xué)習(xí)算法而言在性能方面是一種更好的選擇,但功耗要求之高使其只能用于高性能計(jì)算集群。因此,亟需一種能夠加速算法又不會顯著增加功耗的處理平臺。在這樣的背景下,F(xiàn)PGA 似乎是一種理想的選擇,其固有特性有助于在低功耗條件下輕松啟動眾多并行過程。

讓我們來詳細(xì)了解一下如何在賽靈思 FPGA 上實(shí)現(xiàn)卷積神經(jīng)網(wǎng)絡(luò) (CNN)。CNN 是一類深度神經(jīng)網(wǎng)絡(luò),在處理大規(guī)模圖像識別任務(wù)以及與機(jī)器學(xué)習(xí)類似的其他問題方面已大獲成功。在當(dāng)前案例中,針對在 FPGA 上實(shí)現(xiàn) CNN 做一個(gè)可行性研究,看一下 FPGA 是否適用于解決大規(guī)模機(jī)器學(xué)習(xí)問題。

卷積神經(jīng)網(wǎng)絡(luò)是一種深度神經(jīng)網(wǎng)絡(luò) (DNN),工程師最近開始將該技術(shù)用于各種識別任務(wù)。圖像識別、語音識別和自然語言處理是 CNN 比較常見的幾大應(yīng)用。

什么是卷積神經(jīng)網(wǎng)絡(luò)?

卷積神經(jīng)網(wǎng)絡(luò)是一種深度神經(jīng)網(wǎng)絡(luò) (DNN),工程師最近開始將該技術(shù)用于各種識別任務(wù)。圖像識別、語音識別和自然語言處理是 CNN 比較常見的幾大應(yīng)用。

2012 年,Alex Krishevsky 與來自多倫多大學(xué) (University of Toronto) 的其他研究人員 [1] 提出了一種基于 CNN 的深度架構(gòu),贏得了當(dāng)年的“Imagenet 大規(guī)模視覺識別挑戰(zhàn)”獎(jiǎng)。他們的模型與競爭對手以及之前幾年的模型相比在識別性能方面取得了實(shí)質(zhì)性的提升。自此,AlexNet 成為了所有圖像識別任務(wù)中的對比基準(zhǔn)。

AlexNet 有五個(gè)卷積層和三個(gè)致密層(圖 1)。每個(gè)卷積層將一組輸入特征圖與一組權(quán)值濾波器進(jìn)行卷積,得到一組輸出特征圖。致密層是完全相連的一層,其中的每個(gè)輸出均為所有輸入的函數(shù)。

卷積層

AlexNet 中的卷積層負(fù)責(zé)三大任務(wù),如圖 2 所示:3D 卷積;使用校正線性單元 (ReLu) 實(shí)現(xiàn)激活函數(shù);子采樣(最大池化)。3D 卷積可用以下公式表示:

 

 

其中Y(m,x,y)是輸出特征圖m位置(x,y)處的卷積輸出,S是(x,y)周圍的局部鄰域,W是卷積濾波器組,X(n,x,y)是從輸入特征圖n上的像素位置(x,y)獲得的卷積運(yùn)算的輸入。

 

 

圖 1 – AlexNet 是一種圖像識別基準(zhǔn),包含五個(gè)卷積層(藍(lán)框)和三個(gè)致密層(黃)。

 

 

圖 2 – AlexNet 中的卷積層執(zhí)行 3D 卷積、激活和子采樣。

所用的激活函數(shù)是一個(gè)校正線性單元,可執(zhí)行函數(shù)Max(x,0)。激活函數(shù)會在網(wǎng)絡(luò)的傳遞函數(shù)中引入非線性。最大池化是 AlexNet 中使用的子采樣技術(shù)。使用該技術(shù),只需選擇像素局部鄰域最大值傳播到下一層。

定義致密層

AlexNet 中的致密層相當(dāng)于完全連接的層,其中每個(gè)輸入節(jié)點(diǎn)與每個(gè)輸出節(jié)點(diǎn)相連。AlexNet 中的第一個(gè)致密層有 9,216 個(gè)輸入節(jié)點(diǎn)。將這個(gè)向量乘以權(quán)值矩陣,以在 4,096 個(gè)輸出節(jié)點(diǎn)中產(chǎn)生輸出。在下一個(gè)致密層中,將這個(gè) 4,096 節(jié)點(diǎn)向量與另一個(gè)權(quán)值矩陣相乘得到 4,096 個(gè)輸出。最后,使用 4,096 個(gè)輸出通過 softmax regression 為 1,000 個(gè)類創(chuàng)建概率。

在 FPGA 上實(shí)現(xiàn) CNN

隨著新型高級設(shè)計(jì)環(huán)境的推出,軟件開發(fā)人員可以更方便地將其設(shè)計(jì)移植到賽靈思 FPGA 中。軟件開發(fā)人員可通過從 C/C++ 代碼調(diào)用函數(shù)來充分利用 FPGA 與生俱來的架構(gòu)優(yōu)勢。Auviz Systems 的庫(例如 AuvizDNN)可為用戶提供最佳函數(shù),以便其針對各種應(yīng)用創(chuàng)建定制 CNN??稍谫愳`思 SD-Accel™ 這樣的設(shè)計(jì)環(huán)境中調(diào)用這些函數(shù),以在 FPGA 上啟動內(nèi)核。

最簡單的方法是以順序方式實(shí)現(xiàn)卷積和向量矩陣運(yùn)算??紤]到所涉及計(jì)算量,因此順序計(jì)算會產(chǎn)生較大時(shí)延。

順序?qū)崿F(xiàn)產(chǎn)生很大時(shí)遲的主要原因在于 CNN 所涉及的計(jì)算的絕對數(shù)量。圖 3 顯示了 AlexNet 中每層的計(jì)算量和數(shù)據(jù)傳輸情況,以說明其復(fù)雜性。

 

 

圖 3 – 圖表展示了 AlexNet 中涉及的計(jì)算復(fù)雜性和數(shù)據(jù)傳輸數(shù)量。[!--empirenews.page--]

因此,很有必要采用并行計(jì)算。有很多方法可將實(shí)現(xiàn)過程并行化。圖 6 給出了其中一種。在這里,將 11x11 的權(quán)值矩陣與一個(gè) 11x11 的輸入特征圖并行求卷積,以產(chǎn)生一個(gè)輸出值。這個(gè)過程涉及 121 個(gè)并行的乘法-累加運(yùn)算。根據(jù) FPGA 的可用資源,我們可以并行對 512 抑或 768 個(gè)值求卷積。

為了進(jìn)一步提升吞吐量,我們可以將實(shí)現(xiàn)過程進(jìn)行流水線化。流水線能為需要一個(gè)周期以上才能完成的運(yùn)算實(shí)現(xiàn)更高的吞吐量,例如浮點(diǎn)數(shù)乘法和加法。通過流水線處理,第一個(gè)輸出的時(shí)延略有增加,但每個(gè)周期我們都可獲得一個(gè)輸出。

使用 AuvizDNN 在 FPGA 上實(shí)現(xiàn)的完整 CNN 就像從 C/C++ 程序中調(diào)用一連串函數(shù)。在建立對象和數(shù)據(jù)容器后,首先通過函數(shù)調(diào)用來創(chuàng)建每個(gè)卷積層,然后創(chuàng)建致密層,最后是創(chuàng)建 softmax 層,如圖 4 所示。

 

 

圖 4 - 實(shí)現(xiàn) CNN 時(shí)的函數(shù)調(diào)用順序。

 

 

圖 5 – 使用 AuvizDNN 創(chuàng)建 AlexNet 的 L1 的代碼片段。

 

 

圖 6 – AlexNets 的性能因 FPGA 類型不同而不同。

AuvizDNN 是 Auviz Systems 公司提供的一種函數(shù)庫,用于在 FPGA 上實(shí)現(xiàn) CNN。該函數(shù)庫提供輕松實(shí)現(xiàn) CNN 所需的所有對象、類和函數(shù)。用戶只需要提供所需的參數(shù)來創(chuàng)建不同的層。例如,圖 5 中的代碼片段顯示了如何創(chuàng)建 AlexNet 中的第一層。

AuvizDNN 提供配置函數(shù),用以創(chuàng)建 CNN 的任何類型和配置參數(shù)。AlexNet 僅用于演示說明。CNN 實(shí)現(xiàn)內(nèi)容作為完整比特流載入 FPGA 并從 C/C++ 程序中調(diào)用,這使開發(fā)人員無需運(yùn)行實(shí)現(xiàn)軟件即可使用 AuvizDNN。

FPGA 具有大量的查找表 (LUT)、DSP 模塊和片上存儲器,因此是實(shí)現(xiàn)深度 CNN 的最佳選擇。在數(shù)據(jù)中心,單位功耗性能比原始性能更為重要。數(shù)據(jù)中心需要高性能,但功耗要在數(shù)據(jù)中心服務(wù)器要求限值之內(nèi)。

像賽靈思 Kintex® UltraScale™ 這樣的 FPGA 器件可提供高于 14 張圖像/秒/瓦特的性能,使其成為數(shù)據(jù)中心應(yīng)用的理想選擇。圖 6 介紹了使用不同類型的 FPGA 所能實(shí)現(xiàn)的性能。

一切始于 c/c++

卷積神經(jīng)網(wǎng)絡(luò)備受青睞,并大規(guī)模部署用于處理圖像識別、自然語言處理等眾多任務(wù)。隨著 CNN 從高性能計(jì)算應(yīng)用 (HPC) 向數(shù)據(jù)中心遷移,需要采用高效方法來實(shí)現(xiàn)它們。

FPGA 可高效實(shí)現(xiàn) CNN。FPGA 的具有出色的單位功耗性能,因此非常適用于數(shù)據(jù)中心。

AuvizDNN 函數(shù)庫可用來在 FPGA 上實(shí)現(xiàn) CNN。AuvizDNN 能降低 FPGA 的使用復(fù)雜性,并提供用戶可從其 C/C++ 程序中調(diào)用的簡單函數(shù),用以在 FPGA 上實(shí)現(xiàn)加速。使用 AuvizDNN 時(shí),可在 AuvizDNN 庫中調(diào)用函數(shù),因此實(shí)現(xiàn) FPGA 加速與編寫 C/C++ 程序沒有太大區(qū)別。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護(hù)是驅(qū)動電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機(jī)驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計(jì)工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉