日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 電源 > 線性電源
[導讀]根據壓電陶瓷微位移器對驅動電源的需求,設計了壓電驅動電源系統的方案。該方案先介紹了電源系統中的數字電路部分和模擬電路部分,并對驅動電源的精度與穩(wěn)定性進行了分析與改進。最后對驅動電源的性能進行了實驗驗證。實驗結果表明:該設計方案的電源輸出電壓噪聲低于0.43 mV、輸出最大非線性誤差低于0.024%、分辨率可達1.44 mV,能夠滿足高分辨率微位移定位系統中靜態(tài)定位控制的需求。

0 引言

壓電陶瓷驅動器(PZT)是微位移平臺的核心,其主要原理是利用壓電陶瓷的逆壓電效應產生形變,從而驅動執(zhí)行元件發(fā)生微位移。壓電陶瓷驅動器具有分辨率高、響應頻率快、推力大和體積小等優(yōu)點,在航空航天、機器人、微機電系統、精密加工以及生物工程等領域中得到了廣泛的應用。然而壓電陶瓷驅動器的應用離不開性能良好的壓電陶瓷驅動電源。要實現納米級定位的應用,壓電陶瓷驅動電源的輸出電壓需要在一定范圍內連續(xù)可調,同時電壓分辨率需要達到毫伏級。因此壓電陶瓷驅動電源技術已成為壓電微位移平臺中的關鍵技術。

1 壓電驅動電源的系統結構

1.1 壓電驅動電源的分類

隨著壓電陶瓷微位移定位技術的發(fā)展,各種專用于壓電陶瓷微位移機構的驅動電源應運而生。目前驅動電源的形式主要有電荷控制式和直流放大式兩種。電荷控制式驅動電源存在零點漂移,低頻特性差的特點限制其應用。而直流放大式驅動電源具有靜態(tài)性能好、集成度高、結構簡單等特點,因而本文的設計原理采用直流放大式壓電驅動電源。直流放大式電源的原理如圖1所示。

 

 

1.2 直流放大式壓電驅動電源的系統結構

驅動電源電路主要由微處理器、D/A轉換電路和線性放大電路組成。通過微處理器控制D/A產生高精度、連續(xù)可調的直流電壓(0~10 V),通過放大電路對D/A輸出的直流電壓做線性放大和功率放大從而控制PZT驅動精密定位平臺。

該設計中采用LPC2131作為微處理器,用于產生控制信號及波形;采用18位電壓輸出DA芯片AD5781作為D/A轉換電路的主芯片,產生連續(xù)可調的直流低壓信號;采用APEX公司的功率放大器PA78 作為功率放大器件,輸出0~100 V 的高壓信號從而驅動PZT.為實現高分辨率壓電驅動器的應用,壓電驅動電源分辨率的設計指標達到1 mV量級。

2 基于ARM 的低壓電路設計

2.1 ARM控制器簡介

壓電陶瓷驅動電源中ARM控制器主要提供兩方面功能:作為通信設備提供通用的輸入/輸出接口;作為控制器運行相關控制算法以及產生控制信號或波形實現PZT的靜態(tài)定位操作。針對如上需求,本設計采用LPC2131作為主控制器,LPC2131是Philips公司生產的基于支持實時仿真和跟蹤的32 位ARM7TDMI-S-CPU的微控制器,主頻可達到60 MHz;LPC2131內部具有8 KB片內靜態(tài)RAM和32 KB嵌入的高速FLASH存儲器;具有兩個通用UART接口、I2C接口和一個SPI接口。由于LPC2131具有較高的數據處理能力和豐富的接口資源使其能夠作為壓電驅動電源的控制芯片。

2.2 D/A電路設計

由于壓電驅動電源要求輸出電壓范圍為0~100 V,分辨率達到毫伏級,所以D/A的分辨率需達到亞毫伏級。本設計采用AD5781作為D/A器件。AD5781是一款SPI接口的18位高精度轉換器,輸出電壓范圍-10~10 V,提供±0.5 LSB INL,±0.5 LSB DNL和7.5 nV/ Hz噪聲頻譜密度。另外,AD5781 還具有極低的溫漂(0.05 ppm/℃)特性。因此,該D/A轉換器芯片特別適合于精密模擬數據的獲取與控制。D/A 電路設計如圖2 所示。

在硬件電路設計中,由于AD5781 采用的精密架構,要求強制檢測緩沖其電壓基準輸入,確保達到規(guī)定的線性度。因此選擇用于緩沖基準輸入的放大器應具有低噪聲、低溫漂和低輸入偏置電流特性。這里選用AD8676,AD8676 是一款超精密、36 V、2.8 nV/ Hz 雙通道運算放大器,具有0.6 μV/℃低失調漂移和2 nA輸入偏置電流,因而能為AD5781提供精密電壓基準。通過下拉電阻將AD5781的CLR和LDAC引腳電平拉低,用于設置AD5781為DAC二進制寄存器編碼格式和配置輸出在SYNC的上升沿更新。

 

 

ARM端的軟件設計中,除正確配置AD5781的相關寄存器外,還應正確配置SPI的時鐘相位、時鐘極性和通信模式。正確的SPI接口時序配置圖如圖3所示。

 

 

3 高壓線性放大電路設計

本文壓電驅動電源采用直流放大原理,通過高壓線性放大電路得到0~100 V連續(xù)可調的直流電壓驅動壓電陶瓷。放大電路決定著電源輸出電壓的分辨率和線性度,是整個電源的關鍵。

3.1 經典線性放大電路設計

放大電路采用美國APEX公司生產的高壓運算放大器PA78作為主芯片。PA78的輸入失調電壓為8 mV,溫漂-63 V/°C,轉換速率350 V/μs,輸入阻抗108 Ω,輸出阻抗44 Ω,共模抑制比118 dB.基于PA78的線性放大電路設計如圖4所示。配置PA78為正向放大器,放大倍數為Gain=1+ R2 R1 ,得到輸出電壓范圍為0~100 V.

如果運放兩個輸入端上的電壓均為0 V,則輸出端電壓也應該等于0 V.但事實上,由于放大器制造工藝的原因,不可避免地造成同相和反相輸入端的不匹配,使輸出端總有一些電壓,該電壓稱為失調電壓。失調電壓隨著溫度的變化而改變,這種現象被稱為溫度漂移(溫漂),溫漂的大小隨時間而變化。PA78的失調電壓和溫漂分別為8 mV、-63 V/°C,并且失調電壓和溫漂都是隨機的,使PA78無法應用于毫伏級分辨率的電壓輸出,需要對放大電路進行改進。

 

[!--empirenews.page--]

 

3.2 放大電路的改進

這里將PA78視為被控對象G(S),將失調電壓和溫漂視為擾動N(S),這樣就把提高放大器輸出電壓精度轉化成減小控制系統的穩(wěn)態(tài)誤差的控制器設計的問題。在控制器的設計中常用的校正方法有串聯校正和反饋校正兩種。一般來說反饋校正所需的元件數少、電路簡單。但是在高壓放大電路中,反饋信號是由PA78的輸出級提供。反饋信號的功率較高,為元件選型和電路設計帶來不便,故線性放大電路中不使用反饋校正法。而在串聯校正方法中,有源器件的輸入不包含高壓反饋信號,所以該設計采用串聯校正方法,采用模擬PI(比例-積分)控制器G1(S)進行校正,如圖5 所示。

 

 

成比例的反應輸入信號e(t)及其積分,即:

 

 

由式(2)觀察可得,PI控制器相當于在控制系統中增加了一個位于原點的開環(huán)極點,開環(huán)極點的存在可以提高系統的型別,由于系統的型別的提高可以減小系統的階躍擾動穩(wěn)態(tài)誤差(對于線性放大電路,可視失調電壓和溫漂為階躍擾動)。同時PI控制器還增加了一個位于復平面中左半平面的開環(huán)零點,復實零點的增加可以提高系統的阻尼程度,從而改善系統的動態(tài)性能,緩解由犧牲的動態(tài)性能換取穩(wěn)態(tài)性能對系統產生的不利影響。

放大電路的設計中采用有源模擬PI控制器,改進后的線性放大電路如圖6所示。其中PI控制器的放大器采用AD8676,AD8676的輸入失調電壓低于50 μV(滿溫度行程下),電壓噪聲≤0.04 μV(P-P)@0.1~10 Hz,因此適合用于串聯校正環(huán)節(jié),以提高系統穩(wěn)態(tài)性能、減小輸出電壓漂移。

3.3 相位補償

從工程角度考慮,由于干擾源的存在,會使系統的穩(wěn)定性發(fā)生變化,導致系統發(fā)生震蕩。因此保證控制系統具有一定的抗干擾性的方法是使系統具有一定的穩(wěn)定裕度即相角裕度。

由于實際電路中存在雜散電容,其中放大器反向輸入端的對地電容對系統的穩(wěn)定性有較大的影響。如圖6所示,采用C5和C6補償反向端的雜散電容。從系統函數的角度看,即構成超前校正,增加開環(huán)系統的開環(huán)截止頻率,從事增加系統帶寬提高響應速度。

PA78有兩對相位補償引腳,通過外部的RC網絡對放大器內部的零極點進行補償。通過PA78的數據表可知,PA78內部的零極點位于高頻段。根據控制系統抗噪聲能力的需求,配置RC網絡使高頻段的幅值特性曲線迅速衰減,從而提高系統的抗干擾能力。圖6中,R4,C1與R5,C2構成RC補償網絡。

 

 

此外電路中C3的作用是防止輸出信號下降沿的振動引起的干擾;R10起到偏置電阻的作用,將電源電流注入到放大器的輸出級,提高PA78的驅動能力。

將PI控制器的參數分別設置為KP=10、KI=0.02;超前校正補償電容分別為12 pF和220 pF;RC補償網絡為R=10 kΩ、C=22 pF.利用線性放大電路的Spice模型進行仿真得到幅頻特性和相頻特性曲線如圖7所示。從圖中觀察可得,放大系統的帶寬可達100 kHz,從而保證了系統良好的動態(tài)特性,同時相角裕度γ>60°使系統具有較高的穩(wěn)定性(由于PZT的負載電抗特性一般呈容性,所以留有較大的相角裕度十分必要)。

 

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統,而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉