日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁(yè) > 電源 > 電源-LED驅(qū)動(dòng)
[導(dǎo)讀]數(shù)學(xué)模型總是有助于確定特定設(shè)計(jì)的最佳補(bǔ)償組件。然而,補(bǔ)償WLED電流調(diào)節(jié)升壓轉(zhuǎn)換器的回路與補(bǔ)償配置為調(diào)節(jié)電壓的相同轉(zhuǎn)換器略有不同。用傳統(tǒng)方法測(cè)量WLED電流調(diào)節(jié)升壓轉(zhuǎn)換

數(shù)學(xué)模型總是有助于確定特定設(shè)計(jì)的最佳補(bǔ)償組件。然而,補(bǔ)償WLED電流調(diào)節(jié)升壓轉(zhuǎn)換器的回路與補(bǔ)償配置為調(diào)節(jié)電壓的相同轉(zhuǎn)換器略有不同。

用傳統(tǒng)方法測(cè)量WLED電流調(diào)節(jié)升壓轉(zhuǎn)換器的控制回路很麻煩,因?yàn)樗淖杩购艿?。反?FB)引腳和缺少頂部FB電阻。在“Designer系列,第五部分:電流模式控制建模” 1 中,Ray Ridley提出了一種簡(jiǎn)化的小信號(hào)控制環(huán)路模型,用于具有電流模式控制的升壓轉(zhuǎn)換器。以下說明如何修改Ridley的模型,使其適合WLED電流調(diào)節(jié)升壓轉(zhuǎn)換器;它還解釋了如何測(cè)量升壓轉(zhuǎn)換器的控制回路。

回路元件

如圖1所示,任何可調(diào)節(jié)的DC/DC轉(zhuǎn)換器都可以進(jìn)行修改,以便從輸入電壓提供更高或更低的穩(wěn)壓輸出電壓。在這種配置中,如果我們假設(shè)ROUT是純阻性負(fù)載,那么VOUT = IOUT×ROUT。當(dāng)用于為L(zhǎng)ED供電時(shí),DC/DC轉(zhuǎn)換器實(shí)際上通過調(diào)節(jié)低端FB電阻兩端的電壓來控制通過LED的電流,如圖2所示。因?yàn)樨?fù)載本身(LED)取代了上FB電阻,傳統(tǒng)的小信號(hào)控制回路方程不再適用。直流負(fù)載電阻為:

 

 

VFWD,取自二極管數(shù)據(jù)表或測(cè)量值,是ILED的正向電壓; n是串中LED的數(shù)量。但是,從小信號(hào)的角度來看,負(fù)載電阻包括REQ以及ILED處LED的動(dòng)態(tài)電阻rD。雖然一些LED制造商提供不同電流水平的典型rD值,但確定rD的最佳方法是從典型的LED I-V曲線中提取它,這是所有制造商提供的。圖3顯示了OSRAM LW W5SM大功率LED的示例I-V曲線。作為動(dòng)態(tài)(或小信號(hào))量,rD被定義為電壓的變化除以電流的變化,或rD =ΔVFWD/ΔILED。為了從圖3中提取rD,我們只需從VFWD和ILED驅(qū)動(dòng)應(yīng)用的直切線并計(jì)算斜率。例如,使用圖3中的虛線切線,我們?cè)贗LED = 350 mA時(shí)得到rD =(3.5 - 2.0 V)/(1.000 - 0.010 A)=1.51Ω。

 

 

圖1:用于調(diào)節(jié)電壓的可調(diào)節(jié)DC/DC轉(zhuǎn)換器

圖2:用于調(diào)節(jié)LED電流的可調(diào)節(jié)DC/DC轉(zhuǎn)換器

小信號(hào)模型

作為小信號(hào)模型的示例,將使用驅(qū)動(dòng)三個(gè)系列OSRAM LW W5SM部件的TPS61165峰值電流模式轉(zhuǎn)換器。圖4a顯示了電流調(diào)節(jié)升壓轉(zhuǎn)換器的等效小信號(hào)模型,而圖4b顯示了更簡(jiǎn)化的模型。

 

 

圖3:OSRAM LW W5SM的IV曲線

公式3顯示了用于計(jì)算電流調(diào)節(jié)和電壓調(diào)節(jié)升壓轉(zhuǎn)換器中DC增益的基于頻率(s域)的模型:

 

 

其中常見變量為:

 

 

 

 

圖4:電流調(diào)節(jié)升壓轉(zhuǎn)換器的小信號(hào)模型。

 

 

占空比D,以及VOUT和VOUT的修改值對(duì)于兩個(gè)電路,REQ以相同的方式計(jì)算。 Sn和Se分別是升壓轉(zhuǎn)換器的自然電感和補(bǔ)償斜率;和fSW是開關(guān)頻率。電壓調(diào)節(jié)升壓轉(zhuǎn)換器的小信號(hào)模型與電流調(diào)節(jié)升壓轉(zhuǎn)換器的模型之間唯一真正的區(qū)別是電阻KR,它乘以跨導(dǎo)項(xiàng)(1-D)/Ri,并占主導(dǎo)地位極點(diǎn),ωp。表1總結(jié)了這些差異。有關(guān)更多信息,請(qǐng)參見參考文獻(xiàn)1。由于RSENSE的值通常遠(yuǎn)低于配置為調(diào)節(jié)電壓的轉(zhuǎn)換器中ROUT的值,因此ROUT的電流調(diào)節(jié)轉(zhuǎn)換器的增益= REQ,幾乎總是低于電壓調(diào)節(jié)轉(zhuǎn)換器的增益。

測(cè)量環(huán)路

測(cè)量控制環(huán)路增益和電壓調(diào)節(jié)轉(zhuǎn)換器的相位,網(wǎng)絡(luò)或?qū)S铆h(huán)路增益/相位分析儀通常使用1:1變壓器通過小電阻(RINJ)將小信號(hào)注入環(huán)路。然后,分析儀測(cè)量并在頻率上將點(diǎn)A處的注入信號(hào)與點(diǎn)R處的返回信號(hào)進(jìn)行比較,并以幅度差(增益)和時(shí)間延遲(相位)的形式報(bào)告比率。只要A點(diǎn)的阻抗比R點(diǎn)低得多,該電阻就可以插入環(huán)路的任何地方。否則,注入的信號(hào)將太大并干擾轉(zhuǎn)換器的工作點(diǎn)。如圖5所示,F(xiàn)B電阻檢測(cè)輸出電容(低阻抗節(jié)點(diǎn))輸出電壓的高阻抗節(jié)點(diǎn)是這種電阻的典型位置。

在電流調(diào)節(jié)配置中,負(fù)載本身是FB的上部電阻,注入電阻不能與LED串聯(lián)插入。必須首先更改轉(zhuǎn)換器的工作點(diǎn),以便將電阻器插入FB引腳和檢測(cè)電阻之間,如圖6所示。在某些情況下,可能需要一個(gè)非反相單位增益緩沖放大器來降低阻抗。注入點(diǎn)和降低測(cè)量噪聲。

 

 

圖5:電壓調(diào)節(jié)轉(zhuǎn)換器的控制回路測(cè)量。

圖6中的測(cè)量設(shè)置但沒有放大器,并且?guī)в蠷INJ = 51.1,使用Venable環(huán)路分析儀測(cè)量環(huán)路。電流調(diào)節(jié)轉(zhuǎn)換器的模型使用TPS61170的數(shù)據(jù)表設(shè)計(jì)參數(shù)在Mathcad®中構(gòu)建,其具有與TPS61165相同的核心。當(dāng)VIN = 5 V且ILED設(shè)置為350 mA時(shí),該模型給出了TPS61165EVM的預(yù)測(cè)環(huán)路響應(yīng),如圖7所示,它提供了與測(cè)量數(shù)據(jù)的簡(jiǎn)單比較。

我們可以很容易地解釋測(cè)量和測(cè)量之間的差異。通過觀察WLED動(dòng)態(tài)電阻的變化并使用典型的LED IV曲線以及IC放大器增益中的芯片到芯片變化來模擬增益。

 

 

圖6:控制環(huán)電流調(diào)節(jié)轉(zhuǎn)換器的測(cè)量。

 

 

圖7:VIN = 5 V和ILED = 350 mA時(shí)的測(cè)量和模擬環(huán)路增益和相位。

結(jié)論

雖然不精確該數(shù)學(xué)模型為設(shè)計(jì)人員提供了設(shè)計(jì)WLED電流調(diào)節(jié)升壓轉(zhuǎn)換器補(bǔ)償?shù)牧己闷瘘c(diǎn)。此外,設(shè)計(jì)人員可以使用其中一種替代方法測(cè)量控制回路。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉