日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 電源 > 功率器件
[導(dǎo)讀]目前,已經(jīng)可以在1.2V 65nm CMOS技術(shù)的基礎(chǔ)上實現(xiàn)8Vpp和脈沖寬度調(diào)制射頻高壓/大功率驅(qū)動器。在0.9到3.6GHz的工作頻率范圍內(nèi),該芯片在9V的工作電壓下可向50Ω負載提供

目前,已經(jīng)可以在1.2V 65nm CMOS技術(shù)的基礎(chǔ)上實現(xiàn)8Vpp和脈沖寬度調(diào)制射頻高壓/大功率驅(qū)動器。在0.9到3.6GHz的工作頻率范圍內(nèi),該芯片在9V的工作電壓下可向50Ω負載提供8.04Vpp的最大輸出擺幅。這使得CMOS驅(qū)動器能夠直接連接并驅(qū)動LDMOS和GaN等功率晶體管。該驅(qū)動器的最大導(dǎo)通電阻為4.6Ω。2.4GHz時所測量的占空比控制范圍為30.7%到71.5%.通過使用新型薄氧化層漏極延伸MOS器件,該驅(qū)動器可實現(xiàn)可靠的高壓操作,而這一新型器件通過CMOS技術(shù)實現(xiàn)時無需額外的費用。

技術(shù)背景

現(xiàn)代無線手持通信無線電(包括射頻(RF)功率放大器(PA)在內(nèi))均是在深亞微米CMOS中得以實現(xiàn)。不過,在無線基礎(chǔ)設(shè)施系統(tǒng)中,由于需要較大的輸出功率等級,必須通過硅LDMOS或混合技術(shù)(如GaA和更先進的GaN)才能實現(xiàn)RF PA.對下一代可重新配置的基礎(chǔ)設(shè)施系統(tǒng)而言,開關(guān)模式PA(SMPA)似乎能為多頻帶多模式發(fā)射器提供所需的靈活性和高性能。但是,為了將基站SMPA中使用的高功率晶體管與發(fā)射器的所有數(shù)字CMOS模塊相連,需要能夠生成高壓(HV)擺幅的寬帶RF CMOS驅(qū)動器。這樣不僅能實現(xiàn)更優(yōu)的高功率晶體管性能,而且還能將數(shù)字信號處理直接用于控制所需的SMPA輸入脈沖波形,從而提高系統(tǒng)整體性能。

設(shè)計挑戰(zhàn)

LDMOS或GaN SMPA的輸入電容通常為幾個皮法,必須由振幅高于5Vpp的脈沖信號驅(qū)動。因此,SMPA CMOS驅(qū)動器必須同時提供高壓和瓦特級的射頻功率。遺憾的是,深亞微米CMOS給高壓和大功率放大器及驅(qū)動器的實現(xiàn)提出了諸多挑戰(zhàn),尤其是極低的最大工作電壓(即可靠性問題引起的低擊穿電壓)和損耗較大的無源器件(例如用于阻抗變換)。

現(xiàn)有解決方案

用于實現(xiàn)高壓電路的方法并不多??梢圆捎媚軌?qū)崿F(xiàn)高壓容限晶體管的技術(shù)解決方案(如多柵氧化層),但代價是生產(chǎn)流程較昂貴,必須向基線CMOS工藝添加額外的掩模和處理步驟,因此這種方案并不理想。此外,為可靠地增加高壓耐受力,可以采用僅使用標準基線晶體管(使用薄/厚氧化層器件)的電路方案。在第二種方法中,器件堆疊或串聯(lián)陰極是最常見的例子。但是,射頻復(fù)雜性和性能具有很大的局限性,尤其是當串聯(lián)陰極(或堆疊)器件的數(shù)量增加至2個或3個以上時。另一種實現(xiàn)高壓電路的途徑就是如本文所述的在基線CMOS技術(shù)中使用漏極延伸場效應(yīng)管(EDMOS)來實現(xiàn)。

新的解決方案

漏極延伸器件基于智能布線技術(shù),這得益于在ACTIVE(硅)、STI(氧化層)及GATE (多晶硅)區(qū)域中可實現(xiàn)十分精細的尺寸,并能在沒有附加費用的條件下,利用基線深亞微米CMOS技術(shù)實現(xiàn)PMOS和NMOS兩種高壓容限晶體管。盡管與采用該工藝的標準晶體管相比,這些EDMOS設(shè)備的RF性能實際上較低,但由于消除了與其他HV等效電路相關(guān)的重要損耗機制(如串聯(lián)陰極),它們?nèi)阅茉谡麄€高壓電路中實現(xiàn)較高整體性能。

因此,本文所述的高壓CMOS驅(qū)動器拓撲結(jié)構(gòu)采用EDMOS器件來避免器件堆疊。RF CMOS驅(qū)動器采用薄氧化層EDMOS器件通過65nm低待機功耗基線CMOS工藝制造,且無需額外的掩模步驟或工序。對PMOS和NMOS而言,這些器件上測量到的fT分別超過30GHz和50GHz,它們的擊穿電壓限度為12V.高速CMOS驅(qū)動器前所未有地實現(xiàn)了高達3.6GHz的8Vpp輸出擺幅,因而能為像GaN這樣的基于寬帶隙的SMPA提供驅(qū)動。

圖1為本文所述驅(qū)動器的結(jié)構(gòu)示意圖。輸出級包括一個基于EDMOS的逆變器。EDMOS器件可由低壓高速標準晶體管直接驅(qū)動,從而簡化了輸出級與其它數(shù)字和模擬CMOS電路在單顆芯片上的集成。每個EDMOS晶體管均由通過3個CMOS逆變器級實現(xiàn)的錐形緩沖器(圖1中的緩沖器A和B)提供驅(qū)動。兩個緩沖器具有不同的直流等級,以確保每個CMOS逆變器都能在1.2V的電壓下(受技術(shù)所限,即VDD1-VSS1=VDD0-VSS0=1.2V)穩(wěn)定運行。為了使用不同的電源電壓并允許相同的交流操作,兩個緩沖器的構(gòu)造完全相同,并內(nèi)置于單獨的Deep N-Well(DNW)層中。驅(qū)動器的輸出擺幅由VDD1-VSS0決定,可隨意選擇不超過EDMOS器件最大擊穿電壓的任意值,而內(nèi)部驅(qū)動器的運行保持不變。直流電平位移電路可分離每個緩沖器的輸入信號。

 

 

圖1:RF CMOS驅(qū)動電路示意圖和相應(yīng)的電壓波形。[!--empirenews.page--]

CMOS驅(qū)動器的另一個功能就是對輸出方波的脈沖寬度控制,該功能由脈寬調(diào)制(PWM)通過可變柵偏壓技術(shù)實現(xiàn)。PWM控制有助于實現(xiàn)微調(diào)和調(diào)諧功能,從而提升高級SMPA器件的性能。緩沖器A和B的第一個逆變器(M3)的偏置電平可參照該逆變器本身的開關(guān)閾值對RF正弦輸入信號進行上移/下移。偏置電壓的改變將使逆變器M3的輸出脈沖寬度發(fā)生變化。然后,PWM信號將通過另外兩個逆變器M2和M1進行傳輸,并在RF驅(qū)動器的輸出級(EDMOS)合并。

為確保輸出級之前的兩個RF路徑的布局對稱,所有逆變器(從M0到M3)都采用了統(tǒng)一的PMOS-to-NMOS晶體管尺寸比。所有CMOS級中每個加寬晶體管(M0級的總寬度可達4,032μm)的布局被分割成若干個單位晶體管布局參數(shù)化單元(P-cell),并通過優(yōu)化實現(xiàn)最高頻率。每個P-cell都包含一個版圖不對稱的多指晶體管(具有最小柵長)、護圈和所有與頂層內(nèi)部金屬的互連。每個晶體管的布局均可充分擴展。

此外,該驅(qū)動器還包含大尺寸的片上交流耦合和交流退耦平行板交指型金屬邊電容器。電容器Cin與兩個DC輸入偏壓線路(BIASa,b)一起實現(xiàn)直流電平位移。使用片上電容器Cout可實現(xiàn)DC耦合或AC耦合兩種方式的輸出。AC耦合可驅(qū)動需要負柵偏壓的功率晶體管(如GaN)。將四條寬粗的電源線(VSS0,1和VDD0,1)布線于位于兩塊更厚的金屬頂部上的芯片內(nèi)。采用電容器C0、C1、C2和C3對內(nèi)部電源線進行退耦。此外還增加了專用的ESD保護電路以保護CMOS芯片。

CMOS驅(qū)動器的總體芯片面積為1.99mm2,而工作面積(EDMOS和緩沖器)僅為0.16mm2.將原型裸片安裝于PCB上以便于測試,并在50Ω的負載環(huán)境下進行測量。使用高速數(shù)字采樣示波器可捕捉時域信號。圖2顯示了在3V、5V、7V和9V的供電電壓下,且輸入正弦波為2.1GHz時,驅(qū)動器DC耦合輸出的時域波形。在50Ω負載和9V電源下所測量的最大擺幅為8.04Vpp.測量到的驅(qū)動器導(dǎo)通電阻低至4.6Ω。圖3顯示了測量到的脈沖寬度(以占空比表示)控制范圍,以DC偏置電平(即BIASa,b-VSS0,1)的函數(shù)表示。該圖還顯示了不同占空比條件下的兩種時域波形。在2.4GHz頻率和5V電源下可觀察到占空比控制范圍為30.7%至71.5%.在高達3.6GHz的頻率下,RF驅(qū)動器將其脈沖波形保持為8Vpp.在2.4GHz下進行的另一項測量表明,在5V和9V電源下連續(xù)工作24小時后,性能并未發(fā)生下降。

 

 

圖2:2.1GHz時,多種電壓下監(jiān)測到的時域波形(VDD1- VSS0= 3V, 5V, 7V, 9V)。

 

 

圖3:2.4GHz時測量到的占空比。

與之前最先進的CMOS器件相比,上述驅(qū)動器實現(xiàn)了更大的輸出電壓擺幅和更高的工作頻率。此外,該CMOS驅(qū)動器具有與SiGe-BiCMOS等效電路相近的性能。相比之前所有HV驅(qū)動器,本文介紹的芯片具有帶RF控制功能的附加脈沖以提升SMPA系統(tǒng)性能。

本文小結(jié)

本文主要描述了采用1.2V基線65nm CMOS技術(shù)實現(xiàn)8.04Vpp和3.6GHz工作頻率的首款寬帶PWM控制RF SMPA驅(qū)動器。該CMOS驅(qū)動器連接了數(shù)字CMOS電路與高功率晶體管,可充當面向無線基礎(chǔ)設(shè)施系統(tǒng)的下一代可重新配置多頻多模發(fā)射器的主要構(gòu)建模塊。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉