反激開關(guān)電源因結(jié)構(gòu)簡潔、成本低廉,廣泛應(yīng)用于消費(fèi)電子、工業(yè)控制等領(lǐng)域。然而,次級整流二極管在開關(guān)過程中產(chǎn)生的振鈴現(xiàn)象,不僅會導(dǎo)致電磁干擾(EMI)超標(biāo),還會加劇二極管的電壓應(yīng)力,嚴(yán)重時甚至引發(fā)器件損壞,影響電源系統(tǒng)的穩(wěn)定性與可靠性。RC 吸收網(wǎng)絡(luò)作為一種低成本、易實現(xiàn)的無源緩沖方案,能夠有效抑制次級二極管振鈴,成為電源設(shè)計中的關(guān)鍵技術(shù)手段。本文將深入分析振鈴產(chǎn)生的機(jī)理,系統(tǒng)介紹 RC 吸收網(wǎng)絡(luò)的設(shè)計方法與工程應(yīng)用要點。
在現(xiàn)代電力系統(tǒng)中,諧波問題已經(jīng)成為影響電能質(zhì)量和設(shè)備安全運(yùn)行的重要隱患。諧波是指電網(wǎng)中出現(xiàn)的基波以外的整數(shù)倍頻率電流或電壓,通常由非線性負(fù)載(如變頻器、UPS、電力電子設(shè)備)引起。
在物聯(lián)網(wǎng)、邊緣計算和便攜式設(shè)備快速發(fā)展的背景下,F(xiàn)PGA的動態(tài)電源管理技術(shù)已成為突破功耗瓶頸的核心手段。通過動態(tài)電壓頻率調(diào)節(jié)(DVFS)、多電源域劃分和自適應(yīng)電源門控等創(chuàng)新技術(shù),現(xiàn)代FPGA可在保持高性能的同時,將功耗降低60%以上。本文以Xilinx Zynq UltraScale+ MPSoC和萊迪思CrossLinkU-NX為例,系統(tǒng)解析動態(tài)電源管理的技術(shù)原理與實踐路徑。
浪涌(electrical surge),顧名思義就是瞬間出現(xiàn)超出穩(wěn)定值的峰值,它包括浪涌電壓和浪涌電流。浪涌也叫突波,顧名思義就是超出正常工作電壓的瞬間過電壓。
在嵌入式FPGA系統(tǒng)中,電源完整性(Power Integrity, PI)直接影響信號質(zhì)量、時序收斂和系統(tǒng)可靠性。尤其在腦機(jī)接口、5G通信等高實時性場景中,微伏級噪聲可能導(dǎo)致數(shù)據(jù)誤碼率激增。本文結(jié)合8層PCB設(shè)計實踐,解析電源噪聲的傳播機(jī)制與優(yōu)化策略。
穩(wěn)壓器作為電力系統(tǒng)中穩(wěn)定電壓的關(guān)鍵設(shè)備,廣泛應(yīng)用于工業(yè)生產(chǎn)、智能家居、精密儀器等領(lǐng)域。然而,其工作過程中產(chǎn)生的電磁輻射,不僅可能干擾周邊電子設(shè)備的正常運(yùn)行,還可能對人體健康造成潛在影響。因此,采取科學(xué)有效的措施降低穩(wěn)壓器輻射,成為保障用電安全與環(huán)境健康的重要課題。本文將從多個維度,詳細(xì)介紹降低穩(wěn)壓器輻射的實用方法。
在電子電路設(shè)計中,去耦電路的核心作用是抑制電源噪聲、穩(wěn)定供電電壓,而耦合電容作為其中的關(guān)鍵元件,其選型直接決定了電路的穩(wěn)定性、抗干擾能力和整體性能。耦合電容不僅承擔(dān)著濾除高頻噪聲、傳遞交流信號的職責(zé),還需兼顧電路的頻率特性、電壓需求和安裝環(huán)境等多重因素。因此,掌握科學(xué)的選型方法,對提升電子設(shè)備的可靠性具有重要意義。
在電力電子設(shè)備的運(yùn)行體系中,AC/DC 開關(guān)電源作為能量轉(zhuǎn)換的核心部件,其啟動階段的沖擊電流問題一直是影響設(shè)備可靠性與電網(wǎng)穩(wěn)定性的關(guān)鍵因素。沖擊電流通常是指電源接通瞬間,由于輸入濾波電容的初始電壓為零,導(dǎo)致的瞬時大電流峰值,其數(shù)值可達(dá)額定工作電流的數(shù)十倍甚至上百倍。這種瞬時過流不僅會造成電源輸入端口的電壓跌落,影響同一電網(wǎng)中其他設(shè)備的正常工作,還可能損壞整流橋、熔斷器等關(guān)鍵元器件,嚴(yán)重時甚至?xí)l(fā)開關(guān)觸點的電弧拉弧現(xiàn)象,縮短設(shè)備使用壽命。因此,研發(fā)高效、可靠的沖擊電流限制技術(shù),對提升 AC/DC 開關(guān)電源的整體性能具有重要的工程意義。
在嵌入式系統(tǒng)設(shè)計中,MCU(微控制單元)作為核心控制模塊,其供電電路的穩(wěn)定性直接決定了整個系統(tǒng)的運(yùn)行可靠性。不同應(yīng)用場景下,MCU 對供電電壓精度、紋波抑制、效率、成本及體積的需求存在顯著差異,因此科學(xué)選擇供電方案成為嵌入式設(shè)計的關(guān)鍵環(huán)節(jié)。本文將結(jié)合 MCU 供電的核心需求,系統(tǒng)分析主流供電方案的特性的適用場景,為工程設(shè)計提供實用參考。
電池供電系統(tǒng)的可靠性、效率與壽命成為制約技術(shù)發(fā)展的關(guān)鍵瓶頸。傳統(tǒng)鋰電池方案因功率密度不足、循環(huán)壽命有限,難以滿足高脈沖負(fù)載與頻繁充放電場景的需求;而超級電容雖具備毫秒級響應(yīng)與百萬次循環(huán)優(yōu)勢,卻受限于能量密度?;旌蟽δ芡?fù)渫ㄟ^將超級電容與鋰電池優(yōu)勢互補(bǔ),構(gòu)建出兼顧能量與功率特性的新型供電體系,正在電動汽車、數(shù)據(jù)中心備用電源、可再生能源儲能等領(lǐng)域引發(fā)系統(tǒng)性變革。
在智能穿戴設(shè)備追求極致輕薄與持久續(xù)航的賽道上,微型電池技術(shù)正通過硅基負(fù)極材料與固態(tài)電解質(zhì)的雙重突破,重構(gòu)智能手表的能源架構(gòu)。從實驗室原型到消費(fèi)電子量產(chǎn),這項融合材料科學(xué)與微納電子技術(shù)的創(chuàng)新,正在解決傳統(tǒng)鋰離子電池能量密度與安全性的根本矛盾。
用戶對充電效率與設(shè)備便攜性的雙重需求催生了緊湊型適配器的技術(shù)革新。氮化鎵(GaN)器件憑借其高頻開關(guān)特性與低損耗優(yōu)勢,成為突破傳統(tǒng)硅基適配器性能瓶頸的核心技術(shù)。然而,高頻開關(guān)帶來的電磁干擾(EMI)問題,以及緊湊設(shè)計下的散熱與可靠性挑戰(zhàn),成為制約GaN適配器大規(guī)模應(yīng)用的關(guān)鍵因素。本文結(jié)合實際案例與技術(shù)數(shù)據(jù),系統(tǒng)闡述GaN器件在緊湊型適配器中的高頻開關(guān)優(yōu)勢及EMI解決方案。
在電子DIY領(lǐng)域,將閑置電源適配器改造為可調(diào)電壓適配器是資源再利用的典型案例。其中,基于LM2596芯片的模塊因其高集成度、寬輸入范圍(4.5V-40V)和可調(diào)輸出特性(1.25V-37V),成為改造首選。本文結(jié)合工程實踐與實測數(shù)據(jù),系統(tǒng)闡述LM2596模塊的改裝方法及紋波抑制技巧。
整流技術(shù)是開關(guān)電源中能量轉(zhuǎn)換的關(guān)鍵環(huán)節(jié),其本質(zhì)是通過續(xù)流元件構(gòu)建電流回路,實現(xiàn)電能的穩(wěn)定輸出。二者的根本區(qū)別在于續(xù)流元件的選擇與控制方式:
在電子設(shè)備廣泛應(yīng)用的當(dāng)下,開關(guān)電源作為能量轉(zhuǎn)換的核心部件,其電磁兼容性(EMC)直接影響設(shè)備整體性能與周邊環(huán)境安全。其中,輻射騷擾作為開關(guān)電源 EMC 問題的主要表現(xiàn)形式,不僅可能導(dǎo)致設(shè)備自身故障,還會干擾其他電子設(shè)備的正常運(yùn)行,甚至違反國際國內(nèi)相關(guān)電磁兼容標(biāo)準(zhǔn)。因此,深入分析開關(guān)電源輻射騷擾的產(chǎn)生機(jī)制,并制定有效的抑制策略,成為電子工程領(lǐng)域的重要研究課題。