48V直流供電系統(tǒng)廣泛應(yīng)用于數(shù)據(jù)中心、電動(dòng)汽車、工業(yè)自動(dòng)化等領(lǐng)域,母線短路引發(fā)的電弧故障已成為威脅系統(tǒng)安全的核心隱患。當(dāng)48V母線發(fā)生金屬性短路時(shí),故障電流可在數(shù)微秒內(nèi)攀升至數(shù)千安培,傳統(tǒng)機(jī)械斷路器因觸點(diǎn)分離延遲(通常>10ms)難以抑制電弧能量,而單一快速熔斷器又存在動(dòng)作分散性大、缺乏智能判斷能力的問題。針對(duì)這一痛點(diǎn),融合快速熔斷器與固態(tài)斷路器的μs級(jí)協(xié)同保護(hù)機(jī)制,正成為提升系統(tǒng)可靠性的關(guān)鍵技術(shù)路徑。
斷路器是一種用于保護(hù)電路免受過電流、過載及短路損壞的器件。機(jī)電式斷路器 (EMB) 作為業(yè)界公認(rèn)的標(biāo)準(zhǔn)器件,包含兩個(gè)獨(dú)立觸發(fā)裝置:一個(gè)是雙金屬片,響應(yīng)速度較慢,由過電流觸發(fā)跳閘;另一個(gè)則是電磁裝置,響應(yīng)速度較快,由短路觸發(fā)啟動(dòng)。EMB 擁有設(shè)定好的跳閘電流(通常為固定值),具備瞬時(shí)跳閘(電磁觸發(fā))和延時(shí)跳閘(熱觸發(fā)/雙金屬片觸發(fā))兩種特性,可穩(wěn)妥可靠地應(yīng)對(duì)短路與過載情況。
電源系統(tǒng)的過流保護(hù)是保障設(shè)備安全的核心環(huán)節(jié)。以某新能源汽車電池包生產(chǎn)線為例,傳統(tǒng)機(jī)械繼電器因頻繁切換導(dǎo)致觸點(diǎn)燒蝕,每年引發(fā)300余次意外停機(jī),直接損失超2000萬(wàn)元;而采用固態(tài)斷路器后,故障率下降92%,維護(hù)成本降低75%。這一案例揭示了固態(tài)斷路器與機(jī)械繼電器在功能安全電源中的技術(shù)分野——前者以微秒級(jí)響應(yīng)與無(wú)電弧設(shè)計(jì)重構(gòu)保護(hù)邏輯,后者則憑借高負(fù)載能力與低成本優(yōu)勢(shì)延續(xù)傳統(tǒng)市場(chǎng)。
安森美具有卓越 RDS(on)*A 性能的 SiC JFET,特別適用于需要大電流處理能力和較低開關(guān)速度的應(yīng)用,如固態(tài)斷路器和大電流開關(guān)系統(tǒng)。得益于碳化硅(SiC)優(yōu)異的材料特性和 JFET 的高效結(jié)構(gòu),可實(shí)現(xiàn)更低的導(dǎo)通電阻和更佳的熱性能,非常適合需要多個(gè)器件并聯(lián)以高效管理大電流負(fù)載的應(yīng)用場(chǎng)景。
本文從工作電壓范圍、浪涌電流能力、能量吸收能力、成本等方面比較了各種電壓鉗位元件(例如金屬氧化物壓敏電阻 [MOV]、瞬態(tài)電壓抑制 [TVS] 二極管、基于電容器的緩沖電路等)。
本文從工作電壓范圍、浪涌電流能力、能量吸收能力、成本等方面比較了各種電壓鉗位元件(例如金屬氧化物壓敏電阻 [MOV]、瞬態(tài)電壓抑制 [TVS] 二極管、基于電容器的緩沖電路等)。
如今,碳化硅 (SiC) 器件在電動(dòng)汽車 (EV) 和太陽(yáng)能光伏 (PV) 應(yīng)用中帶來(lái)的性能優(yōu)勢(shì)已經(jīng)得到了廣泛認(rèn)可。不過,SiC 的材料優(yōu)勢(shì)還可能用在其他應(yīng)用中,其中包括電路保護(hù)領(lǐng)域。本文將回顧該領(lǐng)域的發(fā)展,同時(shí)比較機(jī)械保護(hù)和使用不同半導(dǎo)體器件實(shí)現(xiàn)的固態(tài)斷路器 (SSCB) 的優(yōu)缺點(diǎn)。最后,本文還將討論為什么 SiC 固態(tài)斷路器日益受到人們青睞。