在5G通信、數(shù)據(jù)中心等高速數(shù)據(jù)傳輸場(chǎng)景中,F(xiàn)PGA憑借其并行處理能力和可重構(gòu)特性,成為實(shí)現(xiàn)高速串行接口的核心器件。然而,高速信號(hào)在傳輸過程中易受時(shí)鐘偏移、抖動(dòng)等因素影響,導(dǎo)致數(shù)據(jù)同步失效。時(shí)鐘數(shù)據(jù)恢復(fù)(CDR)技術(shù)通過從接收信號(hào)中提取時(shí)鐘信息,成為解決這一問題的關(guān)鍵。本文結(jié)合實(shí)際工程案例,從CDR電路設(shè)計(jì)與時(shí)序約束兩個(gè)維度,探討FPGA實(shí)現(xiàn)高速串行通信的優(yōu)化策略。
引言當(dāng)今許多實(shí)時(shí)監(jiān)測(cè)系統(tǒng)與通信設(shè)備領(lǐng)域中,經(jīng)常需要進(jìn)行遠(yuǎn)距離的數(shù)據(jù)傳送。為此,如何實(shí)現(xiàn)高速、可靠及低成本的數(shù)據(jù)傳輸是作為前級(jí)機(jī)或發(fā)送級(jí)的8051單片機(jī)迫切需要解決的新技術(shù)。據(jù)此,我們采用由Dallas Semicondu
這兩種同步方法與鎖相環(huán)相比,優(yōu)點(diǎn)明顯,建立時(shí)間短,只需要一個(gè)幀同步用來檢測(cè)數(shù)據(jù)開始,然后就可在一個(gè)碼元時(shí)間內(nèi)恢復(fù)同步時(shí)鐘,而且對(duì)接收方時(shí)鐘的精度和頻率要求不是很高,整個(gè)編碼和解碼可以分別用一個(gè)FPGA完成設(shè)計(jì),電路設(shè)計(jì)全數(shù)字化,大大降低了PCB設(shè)計(jì)的成本和難度,且調(diào)試方便,縮短了項(xiàng)目周期。
這兩種同步方法與鎖相環(huán)相比,優(yōu)點(diǎn)明顯,建立時(shí)間短,只需要一個(gè)幀同步用來檢測(cè)數(shù)據(jù)開始,然后就可在一個(gè)碼元時(shí)間內(nèi)恢復(fù)同步時(shí)鐘,而且對(duì)接收方時(shí)鐘的精度和頻率要求不是很高,整個(gè)編碼和解碼可以分別用一個(gè)FPGA完成設(shè)計(jì),電路設(shè)計(jì)全數(shù)字化,大大降低了PCB設(shè)計(jì)的成本和難度,且調(diào)試方便,縮短了項(xiàng)目周期。