日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > 模擬 > 模擬
[導(dǎo)讀]ADC的主要趨勢(shì)之一是分辨率越來越高。這一趨勢(shì)影響各種應(yīng)用,包括工廠自動(dòng)化、溫度檢測(cè)和數(shù)據(jù)采集。對(duì)更高分辨率的需求正促使設(shè)計(jì)者從傳統(tǒng)的12位逐次逼近寄存器(SAR)ADC轉(zhuǎn)至分辨率高達(dá)24位的Δ-ΣADC?!?

ADC的主要趨勢(shì)之一是分辨率越來越高。這一趨勢(shì)影響各種應(yīng)用,包括工廠自動(dòng)化、溫度檢測(cè)和數(shù)據(jù)采集。對(duì)更高分辨率的需求正促使設(shè)計(jì)者從傳統(tǒng)的12位逐次逼近寄存器(SAR)ADC轉(zhuǎn)至分辨率高達(dá)24位的Δ-ΣADC。

  所有的ADC都會(huì)具有一定的噪聲,這包括輸入?yún)⒖荚肼暎ˋDC固有噪聲)和量化噪聲(ADC轉(zhuǎn)換時(shí)產(chǎn)生的噪聲)。諸如噪聲、ENOB(有效位數(shù))、有效分辨率和無噪聲分辨率等指標(biāo)在很大程度上定義了ADC的實(shí)際精度。所以,理解與噪聲相關(guān)的性能指標(biāo)是從SAR過渡至Δ-ΣADC最困難的方面之一。由于當(dāng)前對(duì)更高分辨率的迫切需求,設(shè)計(jì)者必須更好地理解ADC噪聲、ENOB、有效分辨率,以及信噪比(SNR)。本文的目的正基于此。

  Δ-ΣADC的更高分辨率和價(jià)值

  在過去,12位SAR ADC通常足以滿足各種信號(hào)和電壓輸入的測(cè)量。如果應(yīng)用中需要更為精細(xì)的測(cè)量,可在ADC之前增加增益級(jí)或可編程增益放大器(PGA)。

  分辨率為16位時(shí),設(shè)計(jì)者的選擇仍然主要是SAR ADC,但也包括部分Δ-ΣADC。然而,對(duì)于需要16位以上分辨率的設(shè)計(jì),Δ-ΣADC則更為普遍。SAR ADC目前受限于18位,而Δ-ΣADC則延伸至18、20和24位。Δ-ΣADC還有其它優(yōu)勢(shì)。其價(jià)格在過去10年中已大幅下降,使用越來越簡(jiǎn)單,已被廣泛接受。

  有效分辨率

  有效分辨率由下式定義(以位為單位):

  有效分辨率= log2 [滿幅輸入電壓范圍/ADC RMS噪聲]

  或更為簡(jiǎn)單:

  有效分辨率= log2 [VIN/VRMS NOISE]

  切勿將有效分辨率與ENOB相混淆,盡管兩者聽起來非常類似。測(cè)量ENOB的最常見方法是對(duì)ADC的正弦波輸入進(jìn)行FFT分析。IEEE(r)標(biāo)準(zhǔn)1057將ENOB定義為:

  ENOB = log2 [滿幅輸入電壓范圍/(ADC RMS噪聲× √12)]

  SINAD定義為信噪比加失真比。SINAD和ENOB用于衡量ADC的動(dòng)態(tài)性能。

  所以:

  SINAD = [RMS輸入電壓/RMS噪聲電壓]

  式中,RMS噪聲= 1/M[eq1。

  

  式中,EAVM =剩余XAVM,XAVM(FM)為DFT之后規(guī)定離散頻率下的平均幅度譜分量。

  有效分辨率和無噪聲分辨率本質(zhì)上衡量ADC在直流下的噪聲性能,此時(shí)頻譜失真(THD、SFDR)無關(guān)緊要。

  知道ADC的噪聲和輸入范圍后,計(jì)算有效分辨率和無噪聲分辨率就很簡(jiǎn)單。

  ADC的輸入電壓范圍基于參考電壓。如果ADC集成PGA,也會(huì)影響電壓范圍。有些Δ-ΣADC包括PGA,以放大小信號(hào)。最新帶PGA的ADC往往規(guī)定噪聲小于100nVRMS。盡管這些噪聲系數(shù)與舊式ADC相比看起來很吸引人,但往往基于非常小的輸入范圍。這是因?yàn)樾〉妮斎敕秶罱K會(huì)放大至適合更寬、基于參考電壓的ADC有效范圍。所以,盡管這些帶PGA的ADC的噪聲看起來很小,但有效分辨率和無噪聲分辨率可能并不像無PGA的ADC那么好。

  簡(jiǎn)單舉例說明。PGA設(shè)置為128的24位ADC,參考電壓為2.5V,輸入范圍為(VREF/PGA ((2.5V/128 = 39.1mV)時(shí),噪聲為70nVRMS。因此,有效分辨率為:

  log2 [VIN/VRMS NOISE] = log2 [39.1mV/70nV] = 19.1位

  使用相同的ADC,PGA設(shè)置為1時(shí),噪聲上升至1.53(VRMS。輸入范圍為5V ((2.5V/1)時(shí),有效分辨率變?yōu)?1.6位。

  最佳方法是參閱ADC的數(shù)據(jù)資料,檢查您所需的輸入范圍。
無噪聲分辨率

  無噪聲分辨率采用峰-峰電壓噪聲,而非RMS噪聲。無噪聲分辨率由下式定義,單位也為位:

  無噪聲分辨率= log2 [滿幅輸入電壓范圍/ADC峰-峰噪聲]

  無噪聲分辨率= log2 [VIN/VP-P NOISE]。

  無噪聲分辨率有時(shí)候也稱為無閃爍分辨率。以實(shí)驗(yàn)室中的51/2或61/2數(shù)字多用表為例考慮這一指標(biāo)。如果顯示屏上的最后一位穩(wěn)定且無閃爍,數(shù)據(jù)輸出字則優(yōu)于系統(tǒng)的噪聲水平。

  以波峰因子6.6為例,峰-峰噪聲為RMS噪聲的6.6倍。因此,有效分辨率比無噪聲分辨率高2.7位。采用以上相同的噪聲和參考值,無噪聲分辨率為18.9位。

  無噪聲計(jì)數(shù)

  無噪聲計(jì)數(shù)是高精度系統(tǒng)的另一指標(biāo),用于評(píng)估ADC性能。對(duì)于那些可能需要50,000個(gè)無噪聲計(jì)數(shù)的應(yīng)用,例如電子秤,尤其如此。可將無噪聲分辨率乘以系數(shù)2N,通過轉(zhuǎn)換計(jì)算得到該值。

  以10位ADC為例。采用210,理想10位ADC的無噪聲計(jì)數(shù)為1,024。理想12位ADC的無噪聲字?jǐn)?shù)為4,096。同理,采用以上相同的無噪聲分辨率,得到的無噪聲計(jì)數(shù)為218.9或489,178。

  Δ-ΣADC過采樣

  Δ-ΣADC的優(yōu)勢(shì)之一是其過采樣架構(gòu)。這意味著內(nèi)部振蕩器/時(shí)鐘的工作頻率遠(yuǎn)高于輸出數(shù)據(jù)速率(也稱為吞吐率)。有些Δ-ΣADC可改變輸出數(shù)據(jù)速率。這樣設(shè)計(jì)者可將采樣優(yōu)化為速度較高、噪聲性能較差;或者優(yōu)化為速度較低并帶更多濾波、噪聲整形(將噪聲移至感興趣測(cè)量區(qū)域之外的頻帶)及噪聲性能更好。許多最新的Δ-ΣADC以表格形式提供有效分辨率和無噪聲分辨率結(jié)果,很容易比較優(yōu)缺點(diǎn)。

  表1所示為示例ADC在雙極性輸入模式和單極性模式下的數(shù)據(jù)率、噪聲、無噪聲分辨率(NFR)和有效分辨率。ADC為MAX11200,24位器件,能夠測(cè)量雙極性((VREF)或單極性(0V至VREF)輸入。MAX11200工作于2.7V至3.6V單電源,基準(zhǔn)可最大偏置至電源。雙極性值基于最大輸入范圍±3.6V;單極性測(cè)量基于0V至3.6V輸入范圍。

  MAX11200的內(nèi)部振蕩器可由軟件設(shè)置為2.4576MHz,在較低數(shù)據(jù)率下可提供60Hz抑制;或者設(shè)置為2.048MHz,在較低數(shù)據(jù)率下可提供50Hz抑制。無論哪種數(shù)據(jù)率,ADC噪聲相同。因此,無噪聲分辨率和有效分辨率值相一致??墒┘油獠空袷幤鳎瑢?shí)現(xiàn)55Hz限波,很好地抑制50Hz和60Hz。

  表1中詳細(xì)列出的一項(xiàng)關(guān)鍵因素是雙極性有效分辨率。由于輸出數(shù)據(jù)字長(zhǎng)度為24位,所以該指標(biāo)限制為最大24位。在3組最低數(shù)據(jù)率設(shè)置下,如果ADC在串行接口上可輸出超過24位的話,那么ADC的噪聲水平可低至使有效分辨率優(yōu)于24位。

  有效分辨率總比無噪聲分辨率好2.7位,除非受限于數(shù)據(jù)輸出字。

  表1. MAX11200采樣率與噪聲關(guān)系表。

  

  噪聲整形和濾波,實(shí)現(xiàn)更低噪聲和更優(yōu)分辨率

  除過采樣外,噪聲整形可使Δ-ΣADC實(shí)現(xiàn)表1所示的低噪聲和高精度。如圖1至3所示。圖1所示為標(biāo)準(zhǔn)ADC的量化噪聲。圖2給出的ADC包括過采樣、數(shù)字濾波和抽樣。采用過采樣的大部分ADC核心為Δ-Σ。過采樣N倍將噪聲延展至更寬的頻帶,而數(shù)字(sinc)濾波器濾除了相當(dāng)部分的噪聲。

  

  圖1. 標(biāo)準(zhǔn)ADC噪聲性能

  

  圖2. ADC采用N倍過采樣、數(shù)字濾波器和抽樣。

  圖3給出的Δ-Σ調(diào)制器與圖2具有相同的框圖,再加上噪聲整形。通過將噪聲不均勻地移至較高頻率,感興趣頻帶內(nèi)的噪聲變得極低。這樣的技術(shù)使得Δ-Σ ADC制造商可以獲得小于1(VRMS的噪聲系數(shù)。

  

  圖3. ADC采用N倍過采樣、噪聲整形、數(shù)字濾波器和抽樣。感興趣的ADC輸入頻帶內(nèi)的噪聲(綠色區(qū)域)變得非常小。

  結(jié)論

  Δ-ΣADC具有過采樣能力和固有的低噪聲,是需要較高分辨率系統(tǒng)設(shè)計(jì)中的極佳選擇。由于設(shè)計(jì)者必須處理更小的信號(hào),所以充分理解ADC噪聲、有效分辨率、ENOB和無噪聲分辨率就成為選擇正確ADC方案中不可缺少的一部分。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

噪聲頻譜密度和信噪比是兩種測(cè)量聲音噪聲的常用技術(shù)。噪聲頻譜密度是一種以頻率為基礎(chǔ)的技術(shù),它可以幫助我們了解聲音的特性,以及噪聲的頻率分布。信噪比是一種以信號(hào)強(qiáng)度為基礎(chǔ)的技術(shù),它可以幫助我們了解聲音的強(qiáng)度,以及噪聲的信號(hào)強(qiáng)...

關(guān)鍵字: 噪聲 頻譜

在現(xiàn)代電子系統(tǒng)中,電源噪聲問題愈發(fā)凸顯,嚴(yán)重影響著設(shè)備的性能與穩(wěn)定性。從智能手機(jī)、筆記本電腦到工業(yè)控制設(shè)備、醫(yī)療儀器,各類電子設(shè)備都面臨著電源噪聲的挑戰(zhàn)。例如,在醫(yī)療成像設(shè)備中,電源噪聲可能導(dǎo)致圖像出現(xiàn)干擾條紋,影響診斷...

關(guān)鍵字: 電源 噪聲 干擾

EMI 濾波器,這一看似簡(jiǎn)單的電子元件,實(shí)則蘊(yùn)含著高科技的智慧。它如同電子世界的 “清道夫”,主要應(yīng)用于電源線和信號(hào)線上。其工作原理基于電感、電容等元件的巧妙組合,宛如一場(chǎng)精密的交響樂演奏。電感對(duì)高頻信號(hào)呈現(xiàn)出高阻抗,如...

關(guān)鍵字: EMI 濾波器 噪聲

在當(dāng)今的電子設(shè)備設(shè)計(jì)領(lǐng)域,電源的高效性與穩(wěn)定性始終是工程師們關(guān)注的核心要點(diǎn)。對(duì)于眾多對(duì)噪聲極為敏感的設(shè)備而言,找到一款既能提供高效動(dòng)力支持,又能確保低噪聲穩(wěn)定運(yùn)行的電源,無疑是整個(gè)設(shè)計(jì)過程中的關(guān)鍵環(huán)節(jié)。在這一探索過程中,...

關(guān)鍵字: 電源 噪聲 濾波器

開關(guān)電源(SMPS)憑借高效、小型化的優(yōu)勢(shì),廣泛應(yīng)用于電子設(shè)備中。但開關(guān)電源在工作時(shí),因高頻開關(guān)動(dòng)作、元器件特性等因素,容易產(chǎn)生噪聲。這些噪聲不僅會(huì)影響自身性能,還可能干擾周邊電子設(shè)備,因此準(zhǔn)確測(cè)量開關(guān)電源中的噪聲至關(guān)重...

關(guān)鍵字: 開關(guān)電源 噪聲 測(cè)量

在電子設(shè)備的電源供應(yīng)領(lǐng)域,如何實(shí)現(xiàn)高效且穩(wěn)定的供電一直是工程師們不懈追求的目標(biāo)。開關(guān)穩(wěn)壓器因其較高的效率在眾多應(yīng)用中得到廣泛使用,然而,其固有的噪聲問題卻常常成為限制其進(jìn)一步應(yīng)用的瓶頸。尤其是在為對(duì)噪聲極為敏感的設(shè)備,如...

關(guān)鍵字: 穩(wěn)壓器 噪聲 濾波器

在現(xiàn)代電子系統(tǒng)中,對(duì)于電源穩(wěn)定性和低噪聲的要求日益嚴(yán)苛。低壓差穩(wěn)壓器(LDO)作為一種關(guān)鍵的電源管理器件,廣泛應(yīng)用于為高速時(shí)鐘、模數(shù)轉(zhuǎn)換器(ADC)、數(shù)模轉(zhuǎn)換器(DAC)、壓控振蕩器(VCO)和鎖相環(huán)(PLL)等對(duì)電源噪...

關(guān)鍵字: 低壓差穩(wěn)壓器 噪聲 LDO

在弱信號(hào)模擬電路中,噪聲是影響電路性能的關(guān)鍵因素。電路噪聲可能導(dǎo)致信號(hào)失真、精度下降,甚至使電路無法正常工作。而供電方式的選擇對(duì)弱信號(hào)模擬電路的噪聲水平有著至關(guān)重要的影響。不同的供電方式會(huì)引入不同類型和程度的噪聲,因此,...

關(guān)鍵字: 弱信號(hào) 模擬電路 噪聲

在現(xiàn)代電子測(cè)量系統(tǒng)中,傳感器與模數(shù)轉(zhuǎn)換器(ADC)扮演著極為關(guān)鍵的角色。傳感器負(fù)責(zé)將各類物理量精準(zhǔn)轉(zhuǎn)換為電信號(hào),而 ADC 則承擔(dān)著把模擬信號(hào)轉(zhuǎn)換為便于后續(xù)處理的數(shù)字信號(hào)的重任。在這一過程中,傳感器輸出的噪聲以及 ADC...

關(guān)鍵字: 傳感器 模數(shù)轉(zhuǎn)換器 電信號(hào)

在現(xiàn)代電子測(cè)量系統(tǒng)中,傳感器負(fù)責(zé)將物理量轉(zhuǎn)換為電信號(hào),而模數(shù)轉(zhuǎn)換器(ADC)則將模擬信號(hào)轉(zhuǎn)換為數(shù)字信號(hào)以便后續(xù)處理。傳感器輸出的噪聲以及 ADC 的分辨率是影響系統(tǒng)測(cè)量精度的關(guān)鍵因素,其中傳感器輸出最大噪聲與 ADC 最...

關(guān)鍵字: 傳感器 模數(shù)轉(zhuǎn)換器 分辨率
關(guān)閉