日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > 工業(yè)控制 > 電子設(shè)計(jì)自動化
[導(dǎo)讀] 同步部分概述 正交頻分復(fù)用(OFDM)系統(tǒng)的一個(gè)重要問題是對頻率偏移非常敏感,很小的頻率偏移都會造成系統(tǒng)性能的嚴(yán)重下降。另外收發(fā)端采樣鐘不匹配,也會導(dǎo)致有用數(shù)據(jù)信號相位旋轉(zhuǎn)和幅度衰減,破壞了OFDM子載波間的正

同步部分概述

正交頻分復(fù)用(OFDM)系統(tǒng)的一個(gè)重要問題是對頻率偏移非常敏感,很小的頻率偏移都會造成系統(tǒng)性能的嚴(yán)重下降。另外收發(fā)端采樣鐘不匹配,也會導(dǎo)致有用數(shù)據(jù)信號相位旋轉(zhuǎn)和幅度衰減,破壞了OFDM子載波間的正交性,降低系統(tǒng)性能。因此在OFDM系統(tǒng)中,頻率偏移和采樣鐘偏移估計(jì)的準(zhǔn)確度至關(guān)重要。

OFDM接收系統(tǒng)的同步部分主要包括以下幾方面:頻率同步、采樣鐘同步和符號定時(shí)同步。載波頻率偏移和采樣鐘頻率偏移的存在導(dǎo)致了載波間干擾(ICI)和采樣點(diǎn)增減現(xiàn)象,這就需要頻率同步和采樣鐘同步。同時(shí)在解調(diào)過程中,接收機(jī)是在時(shí)域上的任意點(diǎn)開始接收數(shù)據(jù)的,而OFDM是基于符號的,這就需要檢測到符號的起始位置,否則會因?yàn)榉柕钠鹗嘉恢玫牟缓侠恚鴮?dǎo)致符號間的干擾(ISI),這就是符號定時(shí)同步。

  頻域同步估計(jì)方法

整數(shù)倍頻率偏移估計(jì)算法

頻率偏移△f0分成兩部分:整數(shù)倍和小數(shù)倍子載波間隔頻偏。由于在時(shí)域上已經(jīng)對小數(shù)倍頻偏有一個(gè)粗略估計(jì)和校正,因此頻域內(nèi)是利用內(nèi)插導(dǎo)頻信息對整數(shù)倍頻偏和剩余小數(shù)倍頻偏進(jìn)行估計(jì)校正的。

(1)

式(1)是整數(shù)倍頻率偏移估計(jì)算法表達(dá)式,它是利用連續(xù)導(dǎo)頻在發(fā)射端為已知固定相位的特性,使用一個(gè)長為S的滑動窗作為頻域上一個(gè)OFDM符號有效載波起始位置的估計(jì)范圍,以窗內(nèi)的每一個(gè)數(shù)據(jù)作為OFDM符號有效載波的的起始位置,對前后兩個(gè)符號在假設(shè)的連續(xù)導(dǎo)頻位置上的復(fù)數(shù)據(jù)做相關(guān)求和,這樣就得到了S個(gè)相關(guān)值,其中最大值所對應(yīng)的s即為頻域上一個(gè)OFDM符號有效載波起始位置的估計(jì)值,也即為整數(shù)倍頻偏估計(jì)值。

其中L是連續(xù)導(dǎo)頻個(gè)數(shù);ak是一個(gè)符號內(nèi)第k個(gè)連續(xù)導(dǎo)頻的序號;Yl,ak是FFT輸出的第l個(gè)符號的假設(shè)第k個(gè)連續(xù)導(dǎo)頻位置上的復(fù)數(shù)值;S是整數(shù)倍頻偏的估計(jì)范圍,也即為滑動窗長,s是窗口移動值,s∈S;

是S路相關(guān)和的最大值,其對應(yīng)的s即為整數(shù)倍頻偏的估計(jì)值。

小數(shù)倍頻率偏移和采樣鐘頻率偏移估計(jì)算法

在OFDM系統(tǒng)的接收端,實(shí)際的第m個(gè)子載波的實(shí)際解調(diào)頻率為f'm=f'0+mF',這里,f'0為本地解調(diào)載波頻率,F(xiàn))=F'0N,N為子載波個(gè)數(shù),F(xiàn)'0為接收機(jī)壓控晶振輸出的采樣頻率。由此可以看出,在第m個(gè)子載波上,載波頻偏和采樣鐘偏移的聯(lián)合效應(yīng)是大小等于△fm的子載波頻偏,這里△fm=△f0+m?△F0N,△f0=f'0-f0,△F0=F'0-F0,f0和F0分別為發(fā)射端的中心載波頻率和采用頻率。當(dāng)將整偏校掉后,這里的△f0僅為小數(shù)倍的子載波間隔。

設(shè)pi為導(dǎo)頻點(diǎn)位置,pi∈P,P為導(dǎo)頻點(diǎn)位置集合;i=0,1,…,K-1,K是P的基數(shù);△fpi為第pi個(gè)導(dǎo)頻點(diǎn)上相關(guān)結(jié)果的頻率部分,這個(gè)值以下用表示為估計(jì)結(jié)果。定義,同時(shí)考慮到在第pi個(gè)子載波上的估計(jì)誤差ei,則:

 (2)

其中,△fpi為在第pi個(gè)導(dǎo)頻點(diǎn)上的頻率偏移和采樣鐘偏移之和,現(xiàn)令


為所需估計(jì)的向量參數(shù),式(2)就可以寫作:

(3)

其中,


由于估計(jì)是基于,因此將向量V稱為觀察向量,方程式(3)稱為觀察方程。線性最小平方估計(jì)就是在觀察向量給定的條件下,根據(jù)觀察方程估計(jì)向量。根據(jù)最大似然估計(jì)原理,使得向量V的線性函數(shù)得最小值時(shí),得出的估計(jì)值。對式求導(dǎo)并使之為零,可得:

(4)

公式(3)是在先得出,i=0,...,K-1的基礎(chǔ)上求得的,而可以通過在導(dǎo)頻位置對前后兩個(gè)OFDM符號做相關(guān)運(yùn)算來求。

頻域符號定時(shí)偏移估計(jì)算法

時(shí)域定時(shí)的不準(zhǔn)確就要求頻域內(nèi)進(jìn)一步對OFDM符號定時(shí)進(jìn)行校正。由于時(shí)域內(nèi)保護(hù)間隔是數(shù)據(jù)信號最后L個(gè)采樣點(diǎn)的完全復(fù)制,所以由FFT循環(huán)移位定理可知:符號定時(shí)的偏移所引起的子載波上相位旋轉(zhuǎn)和子載波序號k成正比。由于導(dǎo)頻信號插入位置已知,且其具有相位已知特性,這使得我們可以利用符號內(nèi)插導(dǎo)頻載波間相位變化來做細(xì)符號定時(shí)同步,并與粗符號定時(shí)同步結(jié)合起來,得到一個(gè)準(zhǔn)確的符號起始位置。

設(shè)第j個(gè)OFDM符號定時(shí)偏移在相鄰導(dǎo)頻點(diǎn)上所引起的相位偏移之差,第j個(gè)OFDM符號所估計(jì)出來的細(xì)定時(shí)。則
可表示為:

(5)

(6)

其中,L為散布導(dǎo)頻個(gè)數(shù);N為一個(gè)OFDM符號中有效子載波的個(gè)數(shù);Xj,k是第j個(gè)符號的第k個(gè)散布導(dǎo)頻復(fù)值;△k為兩個(gè)相鄰的子載波序號的差值。

頻域同步部分的FPGA電路實(shí)現(xiàn)模塊

頻域同步電路模塊各單元的工作原理如圖3.1所示。這里使用Altera公司生產(chǎn)的StratixⅡEP2S60的FPGA芯片來實(shí)現(xiàn)。


圖3.1 FFT后同步塊方框圖

FFT模塊輸出復(fù)數(shù)據(jù)經(jīng)過一個(gè)OFDM符號的FIFO模塊延遲后,和當(dāng)前的OFDM復(fù)數(shù)據(jù)進(jìn)行相關(guān),以實(shí)現(xiàn)在整數(shù)倍頻偏估計(jì)和小數(shù)倍頻率偏移算法中所需要的前后兩個(gè)符號的對應(yīng)導(dǎo)頻相關(guān)運(yùn)算,其相關(guān)結(jié)果為32位的復(fù)數(shù)據(jù)。

整數(shù)倍頻率偏移估計(jì)模塊

將相關(guān)單元輸出的復(fù)數(shù)據(jù)的實(shí)虛部符號位送到整數(shù)倍頻偏估計(jì)單元中進(jìn)行整數(shù)倍頻偏估計(jì)。為了節(jié)省芯片資源,這里我們將估計(jì)整數(shù)倍頻偏的算法加以簡化,用相關(guān)后的復(fù)數(shù)據(jù)在導(dǎo)頻位置上的實(shí)虛部的符號位來估計(jì)整數(shù)倍頻偏值。下面的仿真的電路波形圖證明這樣實(shí)現(xiàn)整偏估計(jì)算法是可行的。它的輸入為相關(guān)單元輸出的復(fù)數(shù)據(jù)實(shí)虛部的符號位和此復(fù)數(shù)據(jù)的載波同步位置,輸出為整數(shù)倍頻偏估計(jì)值。

小數(shù)倍頻率偏移和采樣鐘頻率偏移模塊

首先對相關(guān)單元模塊輸出的復(fù)數(shù)據(jù)的實(shí)虛部進(jìn)行歸一化,然后求歸一化單元輸出的16位復(fù)數(shù)據(jù)的相角,同時(shí)用RAM的讀地址和讀使能信號分別控制讀取存有矢量A和矢量B數(shù)據(jù)的ROM表中的數(shù)據(jù)。其中矢量A和B分別為線性最小平方估計(jì)算法中矩陣AT的第一行和第二行矢量,用此相角分別和讀出的矢量A和矢量B在一個(gè)符號內(nèi)進(jìn)行相乘累加,再根據(jù)保護(hù)間隔的不同,乘以相應(yīng)的系數(shù),便可分別得到小數(shù)倍頻偏和采樣鐘頻率偏移的估計(jì)值。

細(xì)定時(shí)估計(jì)模塊

考慮到定時(shí)估計(jì)范圍的問題,該模塊利用四個(gè)符號的散布導(dǎo)頻進(jìn)行定時(shí)估計(jì)。將當(dāng)前符號的散布導(dǎo)頻值及從RAM中讀出的前三個(gè)符號的散布導(dǎo)頻值按一定順序排列,并做相鄰導(dǎo)頻相關(guān)。將相關(guān)后的復(fù)數(shù)據(jù)的實(shí)虛部分別取絕對值累加,并將二者的累加和進(jìn)行歸一化處理后進(jìn)行查表,從而得出復(fù)數(shù)的相位值。這個(gè)相位即為符號定時(shí)偏移所引起的旋轉(zhuǎn)相位。再對此相位做如公式(6)的運(yùn)算,這樣就得到了符號定時(shí)偏移的整數(shù)和小數(shù)部分的和,然后將其送到求整函數(shù)中,從而得到符號定時(shí)偏移的整數(shù)部分。將這個(gè)值經(jīng)過并/串變換后送到前端時(shí)域同步部分,去調(diào)整FFT窗位。

電路仿真

其仿真條件為:瑞利信道,SNR為15dB,載波頻偏設(shè)為-14.9倍子載波間隔(即整數(shù)倍頻偏值為-15,小數(shù)倍頻偏值為0.1倍子載波間隔),采樣鐘偏移為50ppm,保護(hù)間隔長為512,定時(shí)符號偏移為-100個(gè)采樣點(diǎn)。此電路工作頻率為10MHz。輸入的16位復(fù)數(shù)據(jù)由MATLAB仿真程序產(chǎn)生的。

整數(shù)倍頻率偏移電路仿真

由于電路波形中無法表示小數(shù),因此將各小數(shù)進(jìn)行“擴(kuò)展”,其表示皆為二進(jìn)制數(shù)據(jù),以下同。在圖4.1中,out_re[31]和out_im[31]分別是前后兩個(gè)OFDM符號中對應(yīng)子載波相關(guān)結(jié)果的實(shí)虛部的符號位,int_freqoffset[5..0]和syn_int分別是整數(shù)倍頻偏估值和其有效起始位置脈沖。


圖4.1 整數(shù)倍頻偏估計(jì)部分的電路仿真波形圖

由于整數(shù)倍頻偏在每一符號的結(jié)束處才能估計(jì)出來,所以syn_int在每一個(gè)符號的結(jié)束處出現(xiàn),其后即為當(dāng)前符號的整數(shù)倍頻偏值。由于本算法利用了4個(gè)符號的連續(xù)導(dǎo)頻,故圖4.1中,從第四個(gè)syn_int后的int_freqoffset[5..0]才是當(dāng)前符號的整數(shù)倍頻偏估計(jì)值。由仿真波形可看出,估出的整數(shù)倍頻偏與仿真數(shù)據(jù)中所假設(shè)的一致。故用此算法的簡化形式可以準(zhǔn)確地估計(jì)出整數(shù)倍頻偏值。

小數(shù)倍頻率偏移及采樣鐘頻率偏移估計(jì)的電路仿真

sernum[1..0]表示前級輸入的符號類型;syn為輸入復(fù)數(shù)據(jù)中的有用數(shù)據(jù)起始脈沖;rein[15..0]和imin[15..0]分別為FIFO模塊輸出復(fù)數(shù)據(jù)的實(shí)虛部;syn_offset為小數(shù)倍頻偏和采樣鐘偏移估計(jì)結(jié)果的起始位置;fri[14..0]和qdelt[14..0]為小數(shù)倍頻偏估計(jì)值和采樣鐘偏移估計(jì)值,它們由1位符號位和14位小數(shù)位組成。這里的小數(shù)位數(shù)是根據(jù)其估計(jì)范圍和估計(jì)精度要求來確定的。

在圖4.2中,小數(shù)倍頻率偏移和采樣鐘頻率偏移估計(jì)模塊使用連續(xù)導(dǎo)頻進(jìn)行估計(jì)。在每個(gè)符號末,syn_offset高電平有效時(shí),fri[14..0]和qdelt[14..0]才是當(dāng)前符號的小數(shù)倍頻率偏移和采樣鐘頻率偏移估計(jì)值。波形中的估值與實(shí)際數(shù)據(jù)的對應(yīng)關(guān)系如表4.1所示。


圖4.2 小數(shù)倍頻偏和采樣鐘偏移估計(jì)單元的電路仿真波形圖


表4.1 波形圖中數(shù)據(jù)與實(shí)際數(shù)據(jù)對照表

小數(shù)倍頻率偏移和采樣鐘頻率偏移模塊是在整偏校完之后才有效,此時(shí)的小數(shù)倍頻率偏移是經(jīng)過時(shí)域粗偏估計(jì)校正后的剩余部分。表4.1列出波形中的估值與實(shí)際數(shù)據(jù)的對應(yīng)關(guān)系。從表中的數(shù)字對應(yīng)關(guān)系可以看出,電路中估計(jì)的小數(shù)倍頻偏與實(shí)際頻偏的差在0.1%以內(nèi)。采樣鐘偏移估計(jì)值與實(shí)際偏移誤差為1ppm左右,這已滿足了采樣鐘的粗調(diào)精度;相位輸出為前后符號的小數(shù)倍偏頻所引起的相位旋轉(zhuǎn)。由此單元電路,可以準(zhǔn)確地估計(jì)出小數(shù)倍頻偏和采樣鐘偏移及其相位。

  細(xì)定時(shí)同步估計(jì)的電路仿真

圖中的data_re_in[15..0]和data_im_in[15..0]表示經(jīng)公共相位校正后的復(fù)數(shù)據(jù)實(shí)虛部;syn_in是輸入有用數(shù)據(jù)的起始位置脈沖;sym_type[1..0]是前端輸入的符號類型;taok[22..0]和td[9..0]分別為估計(jì)的符號定時(shí)偏移和其整數(shù)部分;syn_tao是taok[22..0]的有效數(shù)據(jù)起始脈沖信號。


圖4.3 符號定時(shí)偏移估計(jì)單元的電路波形圖

圖4.3*有9個(gè)符號。由于本算法利用了4個(gè)符號的散布導(dǎo)頻,故圖4.3中,從第四個(gè)符號的結(jié)束處開始,在syn_tao后的taok[22..0]才是當(dāng)前符號的定時(shí)偏移估計(jì)值。波形中的估值與實(shí)際數(shù)據(jù)的對應(yīng)關(guān)系如表4.2所示。


表4.2 波形圖中數(shù)據(jù)與實(shí)際數(shù)據(jù)對照表

表4.2中的定時(shí)實(shí)際偏移為-112,而不是仿真條件中的-100,這是由于在瑞利信道的仿真模型中,符號定時(shí)同步頭位置(重心位置)是在第一條徑之后12個(gè)采樣點(diǎn)出現(xiàn)的。由表中數(shù)據(jù)對應(yīng)關(guān)系可知,符號定時(shí)偏移估計(jì)單元可準(zhǔn)確地估出符號定時(shí)偏移的整數(shù)部分。由于采樣鐘偏移、算法估計(jì)誤差及電路運(yùn)算誤差的影響,其小數(shù)部分不為零,這與電路的仿真結(jié)果一致。

改進(jìn)前后占用硬件資源比較

表4.3給出了改進(jìn)前后,頻域同步所占用的硬件資源比較,其中ALUTS、Registers、Memorybits、DSPblock9-bitelements分別為自適應(yīng)查找表、寄存器、存儲器和9字節(jié)DSP處理塊。通過比較可以發(fā)現(xiàn),改進(jìn)后的方案可以節(jié)省大量的硬件資源。


表4.3 改進(jìn)前后的硬件資源對比

結(jié)束語

頻率偏移估計(jì)可以分為整數(shù)倍頻偏估計(jì)單元、小數(shù)倍頻偏、采樣鐘偏移估計(jì)單元和符號定時(shí)偏移估計(jì)單元。本文主要介紹各部分的算法方案及電路實(shí)現(xiàn)時(shí)所用的FPGA元件的基本結(jié)構(gòu)、設(shè)計(jì)思路。最后通過對電路的仿真波形可以看出,這些頻域同步算法和FPGA電路能夠滿足多載波傳輸系統(tǒng)的同步要求。



參考文獻(xiàn):

[1].EP2S60datasheethttp://www.dzsc.com/datasheet/EP2S60_2058998.html.
[2].ROMdatasheethttp://www.dzsc.com/datasheet/ROM_1188413.html.
[3].50ppmdatasheethttp://www.dzsc.com/datasheet/50ppm_2555283.html.


來源:春天的早晨1次

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

在當(dāng)今數(shù)字化時(shí)代,邊緣 AI 正以前所未有的態(tài)勢改變著我們的生活與產(chǎn)業(yè)格局。從智能安防到自動駕駛,從醫(yī)療健康到工業(yè)制造,邊緣 AI 的身影無處不在。然而,要實(shí)現(xiàn)邊緣 AI 的全面適用,仍面臨諸多挑戰(zhàn),而負(fù)責(zé)任的賦能技術(shù)則...

關(guān)鍵字: 邊緣 技術(shù) 數(shù)字化

在科技飛速發(fā)展的當(dāng)下,汽車行業(yè)正經(jīng)歷著一場深刻變革,汽車通信系統(tǒng)作為其中的關(guān)鍵領(lǐng)域,展現(xiàn)出了極為光明的前景。其中,車對車(V2V)和車對基礎(chǔ)設(shè)施(V2I)技術(shù)憑借其在避免事故方面的卓越潛力,成為了人們關(guān)注的焦點(diǎn)。

關(guān)鍵字: 汽車 通信系統(tǒng) 技術(shù)

在現(xiàn)代電子系統(tǒng)中,電源扮演著核心角色,如同人體的心臟,為整個(gè)系統(tǒng)穩(wěn)定運(yùn)行提供不可或缺的動力支持。從日常生活中的智能設(shè)備,到復(fù)雜精密的工業(yè)控制系統(tǒng),再到關(guān)乎國計(jì)民生的航空航天、醫(yī)療等關(guān)鍵領(lǐng)域,電源的可靠性直接決定了系統(tǒng)的穩(wěn)...

關(guān)鍵字: 電源 設(shè)備 系統(tǒng)

在全球經(jīng)濟(jì)格局深度調(diào)整的當(dāng)下,企業(yè)面臨著日益激烈的市場競爭。為了在這一浪潮中脫穎而出,實(shí)現(xiàn)可持續(xù)發(fā)展,數(shù)字化轉(zhuǎn)型已成為企業(yè)的必然選擇。而技術(shù)創(chuàng)新作為推動數(shù)字化轉(zhuǎn)型的核心驅(qū)動力,正引領(lǐng)著企業(yè)邁向高 “智” 量發(fā)展的新征程。

關(guān)鍵字: 數(shù)字化 技術(shù) 創(chuàng)新

在現(xiàn)代計(jì)算機(jī)中,CPU(中央處理器)是最重要的組成部分之一。它負(fù)責(zé)執(zhí)行程序指令和處理數(shù)據(jù),因此CPU的性能直接影響到計(jì)算機(jī)的整體運(yùn)行效率。然而,許多用戶在使用計(jì)算機(jī)時(shí)可能會遇到CPU占用率過高的問題,這不僅會導(dǎo)致計(jì)算機(jī)運(yùn)...

關(guān)鍵字: CPU 系統(tǒng)

隨著人工智能、大數(shù)據(jù)、物聯(lián)網(wǎng)等新一代技術(shù)的蓬勃發(fā)展,物流行業(yè)正經(jīng)歷著前所未有的變革。物流智慧化改造,即以智能化、自動化為核心,通過引入先進(jìn)的技術(shù)手段,優(yōu)化物流流程,提升運(yùn)營效率,已成為物流行業(yè)發(fā)展的重要趨勢。智能物流系統(tǒng)...

關(guān)鍵字: 物流 智能 技術(shù)

近年來,隨著科技的飛速發(fā)展,自動駕駛技術(shù)正逐步從概念走向現(xiàn)實(shí),并在全球范圍內(nèi)掀起了一場新的技術(shù)革命。在這場革命中,L3級自動駕駛作為邁向更高階自動駕駛的關(guān)鍵一步,成為了各大車企和技術(shù)提供商競相角逐的重頭戲。本文將深入探討...

關(guān)鍵字: 自動駕駛 技術(shù) L3級

在21世紀(jì)的科技浪潮中,人類社會正以前所未有的速度邁向智能化時(shí)代。從智能家居到智慧城市,從智能制造到智慧醫(yī)療,技術(shù)的每一次飛躍都在深刻改變著我們的生活、工作與思維方式。在這個(gè)充滿無限可能的時(shí)代,匯聚全球領(lǐng)先技術(shù),共同繪制...

關(guān)鍵字: 智能化 技術(shù) 智慧藍(lán)圖

在現(xiàn)代科技和工業(yè)領(lǐng)域,電源的穩(wěn)定性和可靠性是確保設(shè)備正常運(yùn)行和系統(tǒng)穩(wěn)定工作的基石。然而,電源系統(tǒng)的復(fù)雜性使得其可靠性預(yù)測成為一個(gè)極具挑戰(zhàn)性的任務(wù)。本文將從多個(gè)角度探討電源可靠性如何實(shí)現(xiàn)更精準(zhǔn)的預(yù)測,以期為相關(guān)領(lǐng)域的研究和...

關(guān)鍵字: 電源 可靠性 系統(tǒng)

hmi是Human Machine Interface 的縮寫,"人機(jī)接口",也叫人機(jī)界面。人機(jī)界面(又稱用戶界面或使用者界面)是系統(tǒng)和用戶之間進(jìn)行交互和信息交換的媒介, 它實(shí)現(xiàn)信息的內(nèi)部形式與人類可以接受形式之間的轉(zhuǎn)換...

關(guān)鍵字: HMI 人機(jī)界面 系統(tǒng)
關(guān)閉