日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 消費電子 > 消費電子
[導讀]  電源分配網(wǎng)絡(PDN)的基本設計規(guī)則告訴我們,最好的性能源自一致的、與頻率無關的(或平坦)的阻抗曲線。這是電源穩(wěn)定性非常重要的一個理由,因為穩(wěn)定性差的電源會導致阻抗

  電源分配網(wǎng)絡(PDN)的基本設計規(guī)則告訴我們,最好的性能源自一致的、與頻率無關的(或平坦)的阻抗曲線。這是電源穩(wěn)定性非常重要的一個理由,因為穩(wěn)定性差的電源會導致阻抗峰值,進而劣化平坦的阻抗曲線,以及受電電路的性能。

  由于沒有阻抗路徑是完全平坦的,所以我們需要做一些設計調整。本文旨在幫助你做出一些對系統(tǒng)性能影響最小的折衷。

  源阻抗應該匹配傳輸線阻抗。

  一般來說,這是S參數(shù)測量和所有射頻設備的基本前提。源阻抗(最常見的是50Ω)連接到阻抗與源匹配的同軸電纜,負載也端接到相同的阻抗。這種做法實現(xiàn)了完美的平坦阻抗,不管是從源看到負載還是從負載看到源都是一致的。

  穩(wěn)壓器的輸出阻抗可以被認為是一個源,而PCB層可以看作是一根傳輸線。后端去耦電容就是負載。

  傳輸線基本原理

  當頻率低于傳輸線諧振頻率時,傳輸線特征阻抗可以用電感和電容項定義。電容可以在傳輸線遠端沒有端接時測量。電感可以在傳輸線遠端短路時測量。傳輸線的特征阻抗取決于這兩個測量結果,即:

  

 

  電感和電容交叉點的頻率就是特征阻抗,等于:

  

 

  正確匹配的傳輸線呈現(xiàn)完全平坦的阻抗曲線,其幅度等于特征阻抗。不正確端接的傳輸線呈現(xiàn)為電容或電感性質,在傳輸線諧振頻率的倍數(shù)處會產(chǎn)生許多諧振和抗諧振頻率。如果傳輸線是電容性質,那么抗諧振首先發(fā)生。如果傳輸線是電感性質,那么諧振先發(fā)生。在兩種情況下,首次諧振或抗諧振的頻率為:

  

 

  圖1用50Ω同軸電纜仿真顯示了這些關系。未端接終端阻抗是在電纜末端開路、短路和匹配端接的情況下測量的。

  

 

  圖1:傳輸線近端阻抗開路(藍色)、短路(紅色)和正確匹配(綠色),另外一種有趣的關系。

  在傳輸線和源不匹配的情況下,有兩種可能的解決方案,具體取決于端接電阻是大于還是小于特征阻抗。如果端接電阻小于傳輸線的特性阻抗,那么抗諧振峰值會超過端接電阻。這些阻抗峰值被定義為:

  

 

  諧振最小值等于端接電阻。

  如果端接電阻大于傳輸線的特征阻抗,那么諧振峰值等于端接電阻。抗諧振最小值被定義為:

  

 

  利用前面端接電阻分別是24.9Ω和210Ω的仿真模型可以顯示這些關系,圖2中端接電阻是匹配的。

  

 

  圖2:傳輸線未端接終端阻抗24.9Ω(藍色)、210Ω(紅色)和正確匹配(綠色)。

  這些關系在圖3的對端接24.9Ω和210Ω的50Ω同軸電纜測量中得到了確認。

  

 

  圖3:對端接210Ω(紅色)和24.9Ω(藍色)的50Ω同軸電纜的測量結果。

  這些概念被擴展到實際的一塊雙面印刷電路板,在這塊PCB上面積為4.5“ x 6.3”的裸銅箔中心焊接有一個SMA連接器,如圖4所示。

  

 

  圖4:利用一塊面積為4.5“x6.3” 、一個邊有個SMA連接器的雙面銅箔板測量PCB的開路(綠色)和短路(橙色)阻抗。該阻抗還用SMA連接器正對面的2.7Ω(藍色)和10Ω(紅色)端接電阻進行了測量。電阻用非常短的編帶連接到PCB,以便盡量減小互連電感。

  我們可以使用圖4中的示波器測量結果近似計算PCB的特征阻抗。電容是用標記M3估計的。[!--empirenews.page--]

  

 

  電容用70MHz、10dBΩ的那個點估計。

  

 

  利用(1)可以計算出特征阻抗為:

  

 

  另外,特征阻抗可以看作是開路阻抗和短路阻抗的交叉點,發(fā)生在近似11.5dBΩ或3.76Ω點。

  也可以使用(4)和帶2.7Ω端接電阻的近似峰值阻抗(14.5dBΩ)計算PCB的特征阻抗。

  

 

  重新變換計算Zo。

  

 

  可以用(3)計算第一個諧振頻率或抗諧振頻率,即:

  

 

  用3.6Ω的端接電阻重復進行測量,如圖5所示。

  

 

  圖5:用3.6Ω代替2.7Ω端接電阻對同一塊PCB進行測量(紅色)。注意,在采用3.6Ω的端接電阻后,只有少量峰值指示其特征阻抗稍大于3.6Ω。

  對PCB進行仿真并與圖5進行比較,結果如圖6所示。

  

 

  圖6:PCB仿真結果與圖5所示的測量結果進行比較。

  最后,使用電源端的0.6Ω和3.6Ω源阻抗并在PCB諧振頻率點仿真動態(tài)瞬時響應。仿真模型見圖7,仿真結果見圖8。

  

 

  圖7:用0.6Ω和3.6Ω源阻抗代表穩(wěn)壓器輸出阻抗,在諧振頻率點進行動態(tài)負載瞬時ADS仿真。

  

 

  圖8:瞬時響應仿真結果表明,0.6Ω較低源電阻(紅色) 的瞬時響應比匹配的3.6Ω源電阻(藍色)具有大得多的電壓偏移。

  小結

  本文討論了幾種確定電路板特征阻抗的方法,并用仿真模型定義了PCB特征與PDN性能之間的重要關系。在經(jīng)過實際測量后,關系得到了確認。

  可以通過觀察第一個缺陷是諧振點還是抗諧振點來判斷PCB阻抗是否大于或小于端接阻抗,端接阻抗是否大于PCB阻抗。

  這些結果清晰地表明,為了優(yōu)化PDN性能,必須使PCB層阻抗與穩(wěn)壓器的輸出阻抗相匹配。最好是使PCB層阻抗等于穩(wěn)壓器的輸出阻抗,如果不可能實現(xiàn)的話,PCB阻抗應該低于穩(wěn)壓器輸出阻抗,以便更好地包含與峰值阻抗最大值相關的峰值偏移。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉