函數(shù)發(fā)生器是一種多波形的信號(hào)源。它可以產(chǎn)生正弦波、方波、三角波、鋸齒波,甚至任意波形。有的函數(shù)發(fā)生器還具有調(diào)制的功能,可以進(jìn)行調(diào)幅、調(diào)頻、調(diào)相、脈寬調(diào)制和VCO控制。
無(wú)線單片機(jī)是一種集成了微控制器、存儲(chǔ)器、A/D轉(zhuǎn)換器、接口電路和無(wú)線數(shù)據(jù)通訊收發(fā)芯片的無(wú)線片上系統(tǒng)(SoC)。
芯片代表著科技生產(chǎn)水平, 在信息時(shí)代,電腦、手機(jī)、家電汽車、高鐵、電網(wǎng)、醫(yī)療儀器、機(jī)器人、工業(yè)控制等各種電子產(chǎn)品都離不開(kāi)芯片,是信息產(chǎn)業(yè)的三要素之一,芯片起則科技起,科技興則國(guó)興。
LDO低壓差線性穩(wěn)壓器(Low Dropout Linear Regulator)是一種基于線性穩(wěn)壓原理的集成電路器件,主要用于電子設(shè)備電源管理領(lǐng)域,可在輸入輸出電壓差極低(通常低于400mV)時(shí)穩(wěn)定輸出直流電壓 [1-2]。
在電力電子領(lǐng)域,AC/DC 轉(zhuǎn)換器作為能源變換的核心設(shè)備,其效率與設(shè)計(jì)復(fù)雜度始終是工程師關(guān)注的焦點(diǎn)。隨著寬禁帶半導(dǎo)體技術(shù)的突破,碳化硅(SiC)MOSFET 憑借優(yōu)異的電學(xué)特性,正逐步取代傳統(tǒng)硅基器件,成為高效 AC/DC 轉(zhuǎn)換器設(shè)計(jì)的優(yōu)選方案。與硅(Si)IGBT、MOSFET 相比,采用 SiC MOSFET 的 AC/DC 轉(zhuǎn)換器不僅能實(shí)現(xiàn)更高的能量轉(zhuǎn)換效率,更在設(shè)計(jì)流程中展現(xiàn)出顯著的簡(jiǎn)化優(yōu)勢(shì),從器件選型、拓?fù)浼軜?gòu)到熱管理設(shè)計(jì),全方位降低了工程師的開(kāi)發(fā)難度與成本。
在印制電路板(PCB)設(shè)計(jì)中,過(guò)孔作為實(shí)現(xiàn)不同層間電氣連接的關(guān)鍵結(jié)構(gòu),其性能直接決定了整個(gè)電路的可靠性與穩(wěn)定性。其中,過(guò)孔孔徑大小不僅影響 PCB 的空間利用率和制造成本,更對(duì)電流傳輸能力(通流能力)產(chǎn)生顯著影響。本文將從過(guò)孔的結(jié)構(gòu)原理出發(fā),系統(tǒng)分析孔徑大小與通流能力的內(nèi)在關(guān)聯(lián),結(jié)合實(shí)際應(yīng)用場(chǎng)景提供選型建議,為 PCB 設(shè)計(jì)工程師提供技術(shù)參考。
在現(xiàn)代信息化戰(zhàn)爭(zhēng)中,軍用裝備的電磁環(huán)境日益復(fù)雜,雷達(dá)、通信、導(dǎo)航等電子設(shè)備密集部署,電磁干擾已成為影響裝備作戰(zhàn)效能的關(guān)鍵因素。軍用電磁兼容(EMC)測(cè)試系統(tǒng)作為保障裝備電磁安全性的核心手段,不僅能精準(zhǔn)定位電磁干擾源,更能通過(guò)自動(dòng)化技術(shù)實(shí)現(xiàn)干擾整改,為武器系統(tǒng)的穩(wěn)定運(yùn)行筑牢 “電磁防線”。當(dāng)前,五大主流軍用電磁兼容測(cè)試系統(tǒng)已形成覆蓋 “干擾監(jiān)測(cè) - 定位分析 - 仿真預(yù)測(cè) - 整改優(yōu)化 - 驗(yàn)證評(píng)估” 的全流程技術(shù)體系,成為軍工裝備研發(fā)、生產(chǎn)與列裝的核心支撐。
在電子制造領(lǐng)域,DFM(Design for Manufacturability,可制造性設(shè)計(jì))作為連接研發(fā)與量產(chǎn)的橋梁,通過(guò)在設(shè)計(jì)階段預(yù)判制造風(fēng)險(xiǎn),已成為提升產(chǎn)品良率、降低成本的核心工具。以手機(jī)攝像頭模組封裝工藝為例,傳統(tǒng)BSOB(Bond Stitch on Ball)鍵合模式向Normal Bond工藝的轉(zhuǎn)型,正是DFM理念在微觀制造場(chǎng)景中的典型實(shí)踐。
球柵陣列(BGA)封裝憑借其高密度引腳、優(yōu)異電性能和散熱特性,已成為5G通信、汽車電子等領(lǐng)域的核心封裝形式。然而,其復(fù)雜的焊接工藝和隱匿性失效模式(如枕頭效應(yīng)、焊點(diǎn)開(kāi)裂)對(duì)可靠性構(gòu)成嚴(yán)峻挑戰(zhàn)。本文結(jié)合IPC-7095D標(biāo)準(zhǔn),系統(tǒng)解析BGA失效機(jī)理與工藝優(yōu)化策略。
在電子制造產(chǎn)業(yè)鏈中,PCB設(shè)計(jì)作為產(chǎn)品實(shí)現(xiàn)的源頭環(huán)節(jié),其質(zhì)量直接決定SMT(表面貼裝技術(shù))生產(chǎn)的良率與效率。據(jù)行業(yè)統(tǒng)計(jì),70%以上的SMT生產(chǎn)故障可追溯至PCB設(shè)計(jì)缺陷,這些缺陷不僅導(dǎo)致材料浪費(fèi)與返工成本激增,更可能引發(fā)產(chǎn)品可靠性風(fēng)險(xiǎn)。本文從PCB設(shè)計(jì)規(guī)范出發(fā),系統(tǒng)解析設(shè)計(jì)不良對(duì)SMT生產(chǎn)的關(guān)鍵影響,并提出基于DFM(可制造性設(shè)計(jì))的優(yōu)化策略。
在電子制造領(lǐng)域,PCB(印刷電路板)的可靠性直接決定了終端產(chǎn)品的性能與壽命。其中,BGA(球柵陣列)焊點(diǎn)裂紋、爆板及坑裂是三類典型失效模式,其成因涉及材料、工藝、設(shè)計(jì)等多維度因素。本文從失效機(jī)理出發(fā),結(jié)合行業(yè)經(jīng)典案例,系統(tǒng)解析這三類問(wèn)題的根源與解決方案。
在SMT(表面貼裝技術(shù))生產(chǎn)中,PCB焊盤設(shè)計(jì)是決定焊接質(zhì)量的核心環(huán)節(jié)。據(jù)行業(yè)統(tǒng)計(jì),約60%的焊接缺陷源于焊盤設(shè)計(jì)不合理,如立碑、橋連、空洞等問(wèn)題均與焊盤尺寸、形狀及布局密切相關(guān)。本文基于IPC國(guó)際標(biāo)準(zhǔn)與行業(yè)實(shí)踐,系統(tǒng)解析SMT貼片元器件與PCB焊盤設(shè)計(jì)的協(xié)同優(yōu)化標(biāo)準(zhǔn)。
在新能源汽車電控系統(tǒng)、5G基站等高密度電子設(shè)備中,BGA(球柵陣列)封裝憑借其引腳密度高、信號(hào)傳輸快等優(yōu)勢(shì),已成為芯片與PCB(印刷電路板)連接的核心技術(shù)。然而,BGA錫球與銅基板界面處形成的界面合金共化物(IMC,Intermetallic Compound),卻如同一把“雙刃劍”——既是焊接強(qiáng)度的保障,也是失效的潛在源頭。
在電子制造領(lǐng)域,SMT(表面貼裝技術(shù))因其高效、精準(zhǔn)的特性被廣泛應(yīng)用。然而,SMT生產(chǎn)過(guò)程中的“錯(cuò)漏反”問(wèn)題(即加錯(cuò)料、漏裝料、物料反向)仍是制約產(chǎn)品質(zhì)量和生產(chǎn)效率的關(guān)鍵因素。本文將從錯(cuò)漏反預(yù)防策略與換線(接換料)標(biāo)準(zhǔn)規(guī)范兩大維度,系統(tǒng)解析SMT生產(chǎn)中的核心管控要點(diǎn)。
在電子制造領(lǐng)域,SMT(表面貼裝技術(shù))的物料管理直接決定生產(chǎn)效率與產(chǎn)品良率。從元器件的精密存儲(chǔ)到輔料的高效周轉(zhuǎn),科學(xué)的管理體系需貫穿倉(cāng)儲(chǔ)、領(lǐng)用、使用全流程。本文基于行業(yè)實(shí)踐,解析SMT物料管理的核心規(guī)范,為企業(yè)構(gòu)建高效、可靠的物料管理體系提供參考。