深空探測(cè)任務(wù)是人類探索宇宙奧秘、拓展認(rèn)知邊界的重要途徑。然而,深空環(huán)境充滿了高能粒子輻射,如質(zhì)子、重離子等,這些輻射會(huì)對(duì)探測(cè)器中的電子系統(tǒng),尤其是印刷電路板(PCB)造成嚴(yán)重影響。高能粒子可能引發(fā)單粒子效應(yīng)(SEE),導(dǎo)致電路邏輯錯(cuò)誤、數(shù)據(jù)丟失甚至器件損壞。因此,開(kāi)展深空探測(cè)器PCB抗輻照設(shè)計(jì),通過(guò)屏蔽層拓?fù)鋬?yōu)化與單粒子效應(yīng)容錯(cuò)布局,對(duì)于保障探測(cè)器的可靠運(yùn)行至關(guān)重要。
在當(dāng)今電子產(chǎn)品向小型化、高性能化方向快速發(fā)展的背景下,印刷電路板(PCB)的設(shè)計(jì)與制造面臨著前所未有的挑戰(zhàn)。PCB數(shù)字孿生技術(shù)作為一種新興的智能制造技術(shù),通過(guò)構(gòu)建虛擬的PCB模型,實(shí)現(xiàn)對(duì)實(shí)際生產(chǎn)過(guò)程的實(shí)時(shí)監(jiān)控、預(yù)測(cè)和優(yōu)化??芍圃煨栽O(shè)計(jì)(DFM)規(guī)則引擎能夠根據(jù)PCB設(shè)計(jì)規(guī)范和制造工藝要求,對(duì)設(shè)計(jì)進(jìn)行自動(dòng)檢查和優(yōu)化。而實(shí)時(shí)生產(chǎn)數(shù)據(jù)映射方法則是將實(shí)際生產(chǎn)過(guò)程中的數(shù)據(jù)與數(shù)字孿生模型進(jìn)行關(guān)聯(lián),使模型能夠準(zhǔn)確反映生產(chǎn)狀態(tài)。本文將深入探討PCB數(shù)字孿生構(gòu)建中DFM規(guī)則引擎與實(shí)時(shí)生產(chǎn)數(shù)據(jù)映射方法。
在電子設(shè)備日益小型化、集成化的今天,電磁兼容(EMC)問(wèn)題愈發(fā)凸顯。電磁兼容正向設(shè)計(jì)旨在從產(chǎn)品設(shè)計(jì)初期就考慮電磁兼容性,通過(guò)合理的設(shè)計(jì)和優(yōu)化,減少電磁干擾(EMI)的產(chǎn)生和傳播,確保設(shè)備在復(fù)雜的電磁環(huán)境中能夠正常工作。近場(chǎng)輻射是電磁干擾的重要來(lái)源之一,而PCB(印制電路板)布局參數(shù)對(duì)近場(chǎng)輻射頻譜有著顯著的影響。本文將深入探討近場(chǎng)輻射頻譜與PCB布局參數(shù)的敏感性分析,為電磁兼容正向設(shè)計(jì)提供理論依據(jù)和實(shí)踐指導(dǎo)。
在高速數(shù)字通信領(lǐng)域,112G及以上速率的通道傳輸技術(shù)正逐漸成為主流。然而,隨著數(shù)據(jù)速率的提升,信號(hào)在傳輸過(guò)程中受到的干擾和損耗也愈發(fā)嚴(yán)重。通道去嵌誤差是影響高速信號(hào)完整性的關(guān)鍵因素之一,它會(huì)導(dǎo)致信號(hào)失真、眼圖惡化,進(jìn)而降低通信系統(tǒng)的性能。多端口TRL(Thru-Reflect-Line)校準(zhǔn)技術(shù)和頻變損耗補(bǔ)償模型為抑制112G+通道去嵌誤差提供了有效的解決方案。
在現(xiàn)代電子設(shè)備中,隨著功率需求的不斷增加,大電流傳輸成為了一個(gè)關(guān)鍵問(wèn)題。過(guò)孔作為PCB(印制電路板)中實(shí)現(xiàn)層間電氣連接的重要結(jié)構(gòu),在大電流傳輸過(guò)程中起著至關(guān)重要的作用。然而,過(guò)孔在承載大電流時(shí),會(huì)產(chǎn)生電流密度分布不均勻的現(xiàn)象,進(jìn)而引發(fā)焦耳熱效應(yīng)。過(guò)高的溫度不僅會(huì)影響過(guò)孔的電氣性能,還可能導(dǎo)致PCB的可靠性下降,甚至引發(fā)故障。因此,對(duì)過(guò)孔陣列的電流密度分布與焦耳熱進(jìn)行耦合建模和仿真分析,對(duì)于優(yōu)化PCB設(shè)計(jì)、提高系統(tǒng)可靠性具有重要意義。
在高性能電子系統(tǒng)中,多相供電網(wǎng)絡(luò)(Power Delivery Network,PDN)承擔(dān)著為芯片等關(guān)鍵負(fù)載提供穩(wěn)定、純凈電能的重要任務(wù)。然而,隨著芯片工作頻率的不斷提高和功耗的日益增大,PDN中不可避免地會(huì)出現(xiàn)諧振現(xiàn)象。諧振會(huì)導(dǎo)致電壓波動(dòng)、電磁干擾(EMI)增加等問(wèn)題,嚴(yán)重影響系統(tǒng)的性能和可靠性。磁電混合去耦技術(shù)和反諧振峰消除算法為解決PDN諧振問(wèn)題提供了有效的途徑。
在電子設(shè)備不斷向小型化、高性能化發(fā)展的趨勢(shì)下,芯片的集成度越來(lái)越高,功率密度也顯著增大。球柵陣列封裝(BGA)作為一種常見(jiàn)的芯片封裝形式,在工作過(guò)程中會(huì)產(chǎn)生大量的熱量。如果不能及時(shí)有效地散熱,芯片的溫度會(huì)急劇升高,導(dǎo)致性能下降、壽命縮短甚至損壞。導(dǎo)熱型覆銅板(TCCL)作為電子電路中重要的導(dǎo)熱介質(zhì),其導(dǎo)熱性能對(duì)BGA封裝的散熱效果起著關(guān)鍵作用。本文將通過(guò)實(shí)際測(cè)試案例,分析1.5W/mK導(dǎo)熱型覆銅板基板對(duì)BGA熱阻的降低效果。
在高頻電子電路領(lǐng)域,PTFE(聚四氟乙烯)材料因其優(yōu)異的低介電常數(shù)和低損耗特性,被廣泛應(yīng)用于高頻印制電路板(PCB)的制造。然而,PTFE材料的表面能低、化學(xué)惰性強(qiáng),導(dǎo)致其與銅箔及其他層壓材料之間的層間結(jié)合力較弱,這在一定程度上限制了高頻PTFE混壓板的性能和可靠性。為了解決這一問(wèn)題,本文探討了等離子體處理和低流動(dòng)度半固化片的應(yīng)用對(duì)高頻PTFE混壓板層間結(jié)合力的提升效果,并通過(guò)相關(guān)實(shí)驗(yàn)和代碼模擬進(jìn)行驗(yàn)證。
在高速高頻電子電路領(lǐng)域,材料的選擇對(duì)電路性能起著決定性作用。超低損耗碳?xì)浠衔锊牧弦蚱鋬?yōu)異的電氣性能,如低介電常數(shù)(Dk)和低損耗因子(Df),被廣泛應(yīng)用于微波、毫米波電路以及高速數(shù)字電路中。松下M6S和羅杰斯RO1200是兩款備受關(guān)注的超低損耗碳?xì)浠衔锊牧?。本文將深入評(píng)測(cè)這兩款材料的Dk/Df頻變特性,建立頻變模型,并通過(guò)代碼進(jìn)行模擬分析,為電路設(shè)計(jì)者提供有價(jià)值的參考。
在電子制造領(lǐng)域,3D打印技術(shù)正逐漸嶄露頭角,為復(fù)雜結(jié)構(gòu)電子器件的制造帶來(lái)了新的可能性。3D打印金屬化通孔作為實(shí)現(xiàn)電子器件層間電氣連接的關(guān)鍵技術(shù),其導(dǎo)電性和熱疲勞壽命直接影響著器件的性能和可靠性。納米銀燒結(jié)技術(shù)因其優(yōu)異的導(dǎo)電性能和良好的熱穩(wěn)定性,成為3D打印金屬化通孔的理想材料選擇。本文將探討納米銀燒結(jié)在3D打印金屬化通孔中的應(yīng)用,并通過(guò)實(shí)驗(yàn)驗(yàn)證其導(dǎo)電性和熱疲勞壽命>5000次循環(huán)。
在半導(dǎo)體產(chǎn)業(yè)蓬勃發(fā)展的當(dāng)下,封裝基板作為芯片與外部電路連接的關(guān)鍵橋梁,其性能和質(zhì)量直接影響著整個(gè)半導(dǎo)體器件的可靠性和性能。銅面粗糙度是封裝基板的重要質(zhì)量指標(biāo)之一,過(guò)高的銅面粗糙度會(huì)導(dǎo)致信號(hào)傳輸損耗增加、阻抗不匹配、可靠性降低等問(wèn)題。因此,有效控制半導(dǎo)體封裝基板銅面粗糙度至關(guān)重要。電鍍添加劑和脈沖反鍍技術(shù)作為控制銅面粗糙度的關(guān)鍵手段,近年來(lái)受到了廣泛關(guān)注。
太赫茲(THz)波位于微波與紅外光之間,具有獨(dú)特的頻譜特性,在高速通信、高分辨率成像、無(wú)損檢測(cè)等領(lǐng)域展現(xiàn)出巨大的應(yīng)用潛力。在太赫茲系統(tǒng)中,波導(dǎo)作為重要的傳輸元件,需要與微帶線等平面電路進(jìn)行高效連接。D波段(110 - 170GHz)作為太赫茲頻段的重要子頻段,其微帶線 - 波導(dǎo)轉(zhuǎn)換結(jié)構(gòu)的設(shè)計(jì)至關(guān)重要。S11參數(shù)(反射系數(shù))是衡量轉(zhuǎn)換結(jié)構(gòu)性能的關(guān)鍵指標(biāo)之一,S11< - 20dB意味著大部分能量被有效傳輸,反射能量極小,這對(duì)于保證系統(tǒng)的穩(wěn)定性和性能至關(guān)重要。
隨著5G及未來(lái)6G通信技術(shù)的迅猛發(fā)展,毫米波頻段因其豐富的頻譜資源成為實(shí)現(xiàn)高速數(shù)據(jù)傳輸?shù)年P(guān)鍵。天線集成封裝(AiP,Antenna in Package)技術(shù)將天線與射頻前端集成于一體,有效減小了系統(tǒng)體積,提高了集成度。在毫米波AiP天線集成中,低溫共燒陶瓷(LTCC)轉(zhuǎn)接板與有機(jī)基板的結(jié)合應(yīng)用日益廣泛。然而,由于毫米波頻段的高頻特性,電磁場(chǎng)、熱場(chǎng)、應(yīng)力場(chǎng)等多物理場(chǎng)之間的耦合效應(yīng)顯著,對(duì)天線性能和系統(tǒng)可靠性產(chǎn)生重要影響。因此,開(kāi)展LTCC轉(zhuǎn)接板與有機(jī)基板的多物理場(chǎng)耦合設(shè)計(jì)具有重要的現(xiàn)實(shí)意義。
隨著數(shù)據(jù)存儲(chǔ)和處理需求的飛速增長(zhǎng),DDR(雙倍數(shù)據(jù)速率)內(nèi)存技術(shù)不斷迭代升級(jí)。DDR6作為新一代高速內(nèi)存標(biāo)準(zhǔn),其數(shù)據(jù)傳輸速率大幅提升,這對(duì)信號(hào)完整性提出了更為嚴(yán)苛的挑戰(zhàn)。在DDR6預(yù)布局階段,確保信號(hào)完整性至關(guān)重要,其中ODT(On-Die Termination,片上終端電阻)參數(shù)自適應(yīng)與三維封裝協(xié)同仿真方法是解決信號(hào)完整性問(wèn)題的關(guān)鍵技術(shù)手段。
引言 隨著數(shù)據(jù)通信需求的爆炸式增長(zhǎng),數(shù)據(jù)中心、高性能計(jì)算等領(lǐng)域?qū)Ω咚俦嘲逍诺赖膫鬏斔俾侍岢隽烁咭蟆?24G PAM6(6級(jí)脈沖幅度調(diào)制)技術(shù)憑借其高帶寬利用率和相對(duì)較低的實(shí)現(xiàn)復(fù)雜度,成為下一代高速背板信道的關(guān)鍵技術(shù)之一。然而,在224G PAM6背板信道中,玻纖效應(yīng)和信道衰減等問(wèn)題嚴(yán)重影響了信號(hào)的傳輸質(zhì)量。為了實(shí)現(xiàn)穩(wěn)定可靠的高速數(shù)據(jù)傳輸,必須對(duì)背板信道進(jìn)行優(yōu)化,玻纖效應(yīng)補(bǔ)償與混合調(diào)制均衡技術(shù)成為解決這些問(wèn)題的有效手段。