日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 電源 > 功率器件
[導讀]  簡介  經典的四電阻差動放大器(Differential amplifier,差分放大器)似乎很簡單,但其在電路中的性能不佳。本文從實際生產設計出發(fā),討論了分立式電阻、濾波、交流共

  簡介

  經典的四電阻差動放大器(Differential amplifier,差分放大器)似乎很簡單,但其在電路中的性能不佳。本文從實際生產設計出發(fā),討論了分立式電阻、濾波、交流共模抑制和高噪聲增益的不足之處。

  大學里的電子學課程說明了理想運算放大器的應用,包括反相和同相放大器,然后將它們進行組合,構建差動放大器。圖1所示的經典四電阻差動放大器非常有用,教科書和講座40多年來一直在介紹該器件。

  

 

  圖1.經典差動放大器

  該放大器的傳遞函數(shù)為:

  

 

  若R1 = R3且R2 = R4,則公式1簡化為:

  

 

  這種簡化可以在教科書中看到,但現(xiàn)實中無法這樣做,因為電阻永遠不可能完全相等。此外,基本電路在其他方面的改變可產生意想不到的行為。下列示例雖經過簡化以顯示出問題的本質,但來源于實際的應用問題。

  CMRR

  差動放大器的一項重要功能是抑制兩路輸入的共模信號。如圖1所示,假設V2為5 V,V1為3 V,則4V為共模輸入。V2比共模電壓高1 V,而V1低1 V.二者之差為2 V,因此R2/R1的"理想"增益施加于2 V.如果電阻非理想,則共模電壓的一部分將被差動放大器放大,并作為V1和V2之間的有效電壓差出現(xiàn)在VOUT,無法與真實信號相區(qū)別。差動放大器抑制這一部分電壓的能力稱為共模抑制(CMR)。該參數(shù)可以表示為比率的形式(CMRR),也可以轉換為分貝(dB)。

  在1991年的一篇文章中,Ramón Pallás-Areny和John Webster指出,假定運算放大器為理想運算放大器,則共模抑制可以表示為:

  

 

  其中,Ad為差動放大器的增益,t為電阻容差。因此,在單位增益和1%電阻情況下,CMRR等于50 V/V(或約為34 dB);在0.1%電阻情況下,CMRR等于500 V/V(或約為54 dB)——甚至假定運算放大器為理想器件,具有無限的共模抑制能力。若運算放大器的共模抑制能力足夠高,則總CMRR受限于電阻匹配。某些低成本運算放大器具有60 dB至70 dB的最小CMRR,使計算更為復雜。

  低容差電阻

  第一個次優(yōu)設計如圖2所示。該設計為采用OP291的低端電流檢測應用。R1至R4為分立式0.5%電阻。由Pallás-Areny文章中的公式可知,最佳CMR為64 dB.幸運的是,共模電壓離接地很近,因此CMR并非該應用中主要誤差源。具有1%容差的電流檢測電阻會產生1%誤差,但該初始容差可以校準或調整。然而,由于工作范圍超過80°C,因此必須考慮電阻的溫度系數(shù)。

  

 

  圖2.具有高噪聲增益的低端檢測

  針對極低的分流電阻值,應使用4引腳開爾文檢測電阻。采用高精度0.1Ω電阻,并以幾十分之一英寸的PCB走線直接連接該電阻很容易增加10 mΩ,導致10%以上的誤差。但誤差會更大,因為PCB上的銅走線溫度系數(shù)超過3000 ppm.

  分流電阻值必須仔細選擇。數(shù)值更高則產生更大的信號。這是好事,但功耗(I2R)也會隨之增加,可能高達數(shù)瓦。采用較小的數(shù)值(mΩ級別),則線路和PCB走線的寄生電阻可能會導致較大的誤差。通常使用開爾文檢測來降低這些誤差。可以使用一個特殊的四端電阻(比如Ohmite LVK系列),或者對PCB布局進行優(yōu)化以使用標準電阻。若數(shù)值極小,可以使用PCB走線,但這樣不會很精確。

  商用四端電阻(比如Ohmite或Vishay的產品)可能需要數(shù)美元或更昂貴,才能提供0.1%容差和極低溫度系數(shù)。進行完整的誤差預算分析可以顯示如何在成本增加最少的情況下改善精度。

  有關無電流流過檢測電阻卻具有較大失調(31mV)的問題,是"軌到軌"運算放大器無法一路擺動到負電源軌(接地)引起的。術語"軌到軌"具有誤導性:輸出將會靠近電源軌——比經典發(fā)射極跟隨器的輸出級要近得多——但永遠不會真正到達電源軌。軌到軌運算放大器具有最小輸出電壓VOL,數(shù)值等于VCE(SAT)或RDS(ON)×ILOAD,。若失調電壓等于1.25 mV,噪聲增益等于30,則輸出等于:1.25 mV×30 =±37.5 mV(由于存在VOS,加上VOL導致的35 mV)。根據(jù)VOS極性不同,無負載電流的情況下輸出可能高達72.5 mV.若VOS最大值為30μV,且VOL最大值為8 mV,則現(xiàn)代零漂移放大器(如AD8539)可將總誤差降低至主要由檢測電阻所導致的水平。

  另一個低端檢測應用

  另一個示例如圖3所示。該示例具有較低的噪聲增益,但它使用3 mV失調、10-μV/°C失調漂移和79 dB CMR的低精度四通道運算放大器。在0 A至3.6 A范圍內,要求達到±5 mA精度。若采用±0.5%檢測電阻,則要求的±0.14%精度便無法實現(xiàn)。若使用100 mΩ電阻,則±5 mA電流可產生±500μV壓降。不幸的是,運算放大器隨溫度變化的失調電壓要比測量值大十倍。哪怕VOS調整為零,50°C的溫度變化就會耗盡全部誤差預算。若噪聲增益為13,則VOS的任何變化都將擴大13倍。為了改善性能,應使用零漂移運算放大器(比如AD8638、ADA4051或ADA4528)、薄膜電阻陣列以及精度更高的檢測電阻。

  

 

  圖3.低端檢測,示例2[!--empirenews.page--]

  高噪聲增益

  圖4中的設計用來測量高端電流,其噪聲增益為250.OP07C運算放大器的VOS最大額定值為150μV.最大誤差為150μV×250 = 37.5 mV.為了改善性能,采用ADA4638零漂移運算放大器。該器件在–40°C至+125°C溫度范圍內的額定失調電壓為12.5μV.然而,由于高噪聲增益,共模電壓將非常接近檢測電阻兩端的電壓。OP07C的輸入電壓范圍(IVR)為2 V,這表示輸入電壓必須至少比正電軌低2 V.對于ADA4638而言,IVR = 3 V.

  

 

  圖4.高端電流檢測

  單電容滾降

  圖5中的示例稍為復雜。目前為止,所有的等式都針對電阻而言;但更準確的做法是,它們應當將阻抗考慮在內。在加入電容的情況下(無論是故意添加的電容或是寄生電容),交流CMRR均取決于目標頻率下的阻抗比。若要滾降該示例中的頻率響應,則可在反饋電阻兩端添加電容C2,如通常會在反相運算放大器配置中做的那樣。

  

 

  圖5.嘗試創(chuàng)建低通響應

  如需匹配阻抗比Z1 = Z3和Z2 = Z4,就必須添加電容C4.市場上很容易就能買到0.1%或更好的電阻,但哪怕是0.5%的電容售價都要高于1美元。極低頻率下的阻抗可能無關緊要,但電容容差或PCB布局產生的兩個運算放大器輸入端0.5 pF的差額可導致10 kHz時交流CMR下降6 dB.這在使用開關穩(wěn)壓器時顯得尤為重要。

  單芯片差動放大器(如AD8271、AD8274或AD8276)具有好得多的交流CMRR性能,因為運算放大器的兩路輸入處于芯片上的可控環(huán)境下,且價格通常較分立式運算放大器和四個精密電阻更為便宜。

  運算放大器輸入端之間的電容

  為了滾降差動放大器的響應,某些設計人員會嘗試在兩個運算放大器輸入端之間添加電容C1以形成差分濾波器,如圖6所示。這樣做對于儀表放大器而言是可行的,但對于運算放大器卻不可行。VOUT將會通過R2而上下移動,形成閉合環(huán)路。在直流時,這不會產生任何問題,并且電路的表現(xiàn)與等式2所描述的相一致。隨著頻率的增加,C1電抗下降。進入運算放大器輸入端的反饋降低,從而導致增益上升。最終,運算放大器會在開環(huán)狀態(tài)下工作,因為電容使輸入短路。

  

 

  圖6.輸入電容降低高頻反饋

  在波特圖上,運算放大器的開環(huán)增益在–20dB/dec處下降,但噪聲增益在+20 dB/dec處上升,形成–40dB/dec交越。正如控制系統(tǒng)課堂上所學到的,它必然產生振蕩。一般而言,永遠不要在運算放大器的輸入端之間使用電容(極少數(shù)情況下例外,但本文不作討論)。

  結論

  無論是分立式或是單芯片,四電阻差動放大器的使用都非常廣泛。為了獲得穩(wěn)定且值得投入生產的設計,應仔細考慮噪聲增益、輸入電壓范圍、阻抗比和失調電壓規(guī)格。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉