日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁(yè) > > ACTT
[導(dǎo)讀]基于180 nm BCD工藝平臺(tái)設(shè)計(jì)開(kāi)發(fā)了32 Kibit的多次可編程(MTP)非易失性存儲(chǔ)器(NVM)。詳細(xì)描述了存儲(chǔ)單元的結(jié)構(gòu)設(shè)計(jì)特點(diǎn)、操作機(jī)理及影響非易失性的關(guān)鍵因素。測(cè)試并量化了其在高溫條件下的數(shù)據(jù)保持能力,并根據(jù)Arrhenius模型設(shè)計(jì)了高溫老化試驗(yàn),進(jìn)而計(jì)算其浮柵上電荷泄漏的激活能。經(jīng)過(guò)104次重復(fù)編程和擦除循環(huán)后,MTP NVM樣品的高溫?cái)?shù)據(jù)保持(HTDR)能力驗(yàn)證結(jié)果表明該MTP NVM產(chǎn)品具有很好的可靠性。通過(guò)高溫老化加速試驗(yàn),計(jì)算出分別在100、125和150 ℃條件下3個(gè)樣品的數(shù)據(jù)保持時(shí)間,并對(duì)1/T與數(shù)據(jù)保持時(shí)間曲線進(jìn)行數(shù)學(xué)擬合,計(jì)算出在該180 nm BCD工藝平臺(tái)下浮柵上電荷泄漏的激活能。

引言

存儲(chǔ)器是一種在信息技術(shù)中廣泛用于存儲(chǔ)數(shù)據(jù)、程序的具有記憶功能的裝置,成本、功耗、速度、容量和可靠性是存儲(chǔ)器的核心性能指標(biāo)。按照其對(duì)信息的保存特性,存儲(chǔ)器可以分為非易失性存儲(chǔ)器(NVM)和易失性存儲(chǔ)器兩類。易失性存儲(chǔ)器掉電后存儲(chǔ)的數(shù)據(jù)也會(huì)隨之丟失,需要不斷對(duì)存儲(chǔ)器進(jìn)行更新以保持?jǐn)?shù)據(jù)的穩(wěn)定。NVM即使掉電后存儲(chǔ)的數(shù)據(jù)也不會(huì)丟失【1】。NVM既可以作為—個(gè)獨(dú)立單元 ,也可以作為模塊成為芯片的一部分 ,又稱為嵌入式非易失性存儲(chǔ)器(eNVM)。隨著微控制器( MCU)和電源管理芯片(PMIC)的數(shù)量不斷增長(zhǎng),對(duì)嵌入式存儲(chǔ)器的需求與日俱增,可存儲(chǔ)用戶和產(chǎn)品信息、 安全密鑰、校準(zhǔn)參數(shù)、配置信息和程序代碼等關(guān)鍵信患。

eNVM的主流技術(shù)包括嵌入式閃存(eFlash)、一次可編程(OTP)NVM和多次可編程(MTP)NVM。eFlash是業(yè)界應(yīng)用最廣泛的嵌入式非易失性存儲(chǔ)技術(shù),其性能優(yōu)越、可靠性高、存儲(chǔ)單元面積小。但該技術(shù)工藝兼容性差,需要在邏輯工藝的集成上增加額外的掩模板和工藝步驟,晶圓成本高、開(kāi)發(fā)周期長(zhǎng)。OTP的主要優(yōu)勢(shì)在于其工藝兼容性強(qiáng),在現(xiàn)有的制造技術(shù)上不需要額外的工藝步驟即可實(shí)現(xiàn)非易失性存儲(chǔ),但它的劣勢(shì)是僅支持一次編程,不可反復(fù)進(jìn)行編程。MTP eNVM則兼具eFlash的靈活性、 高性能和OTP的工藝高兼容性。其重復(fù)擦寫次數(shù)可以達(dá)到104次以上, 容量也可以達(dá)到1Mibit。在現(xiàn)今的eNVM市場(chǎng)中,MTP存儲(chǔ)器的市場(chǎng)占有份額每年增長(zhǎng)超過(guò)30%[2], 這意味著MTP技術(shù)已經(jīng)得到市場(chǎng)越來(lái)越來(lái)廣泛的認(rèn)可,并得到了越來(lái)越多的應(yīng)用。

數(shù)據(jù)保持能力是衡量eNVM性能的重要指標(biāo),目前,對(duì)于驗(yàn)證NVM數(shù)據(jù)保持能力的方法,國(guó)內(nèi)外已經(jīng)有不少相關(guān)的研究或標(biāo)準(zhǔn),如JEDEC固態(tài)技術(shù)協(xié)會(huì)制定的JESD22-A117C[3] 和JESD47H[4], 中國(guó)電子技術(shù)標(biāo)準(zhǔn)化研究院牽頭制定的GB/T 35003—2018:《非易失性存儲(chǔ)器耐久和數(shù)據(jù)保持試驗(yàn)方法》[5]等,但大多數(shù)主要集中在相變存儲(chǔ)器[6]、Flash存儲(chǔ)器[7-8]等的數(shù)據(jù)保持能力,而對(duì)MTP存儲(chǔ)器的數(shù)據(jù)保持能力卻鮮有研究。

MTP存儲(chǔ)器的數(shù)據(jù)保持能力不僅要求在高溫條件下能夠保持?jǐn)?shù)據(jù)不丟失,而且要能夠保持很長(zhǎng)的時(shí)間,因而不僅要研究MTP存儲(chǔ)器的可靠性,還要能夠計(jì)算出MTP存儲(chǔ)器的數(shù)據(jù)保持時(shí)間,這對(duì)合理拓寬MTP存儲(chǔ)器溫度應(yīng)用范圍及使用壽命有重要的現(xiàn)實(shí)意義。

基于上述分析, 本文以成都銳成芯微科技股份有限公司的MTP存儲(chǔ)器為例, 對(duì)該存儲(chǔ)器的存儲(chǔ)單元架構(gòu)設(shè)計(jì)、數(shù)據(jù)保持能力測(cè)試及激活能計(jì)算3個(gè)方面展開(kāi)分析, 重點(diǎn)闡述了MTP存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及激活能計(jì)算。

1、MTP存儲(chǔ)單元結(jié)構(gòu)設(shè)計(jì)

成都銳成芯微科技股份有限公司的MTP存儲(chǔ)單元結(jié)構(gòu)如圖1所示,圖中BL為位線,WL為字線,NW為n阱,CG為控制柵,F(xiàn)G為浮柵,COM為源端接口。相比于傳統(tǒng)的1T1C結(jié)構(gòu)(NMOS晶體管),該存儲(chǔ)單元采用2T1C結(jié)構(gòu)(2個(gè)PMOS晶體管加1個(gè)NMOS Cap電容)。一個(gè)PMOS用作選通管,通過(guò)WL控制選中和關(guān)斷;另1個(gè)PMOS用作存儲(chǔ)管,其多晶硅柵是浮柵,周圍被電介質(zhì)層包住,防止注入的電荷泄漏。位于P阱(PW)里面的NMOS電容和存儲(chǔ)管的多晶硅柵共享,形成兩個(gè)電容的耦合效果,因此,可以通過(guò)該NMOS電容對(duì)PMOS存儲(chǔ)管浮柵上的電壓進(jìn)行控制。該存儲(chǔ)單元的另一重要特性在于PW被深n阱 (DNW)包圍,這樣PW可以施加不同于襯底的電位。

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

圖1 MTP存儲(chǔ)單元結(jié)構(gòu)示意圖

MTP存儲(chǔ)器本質(zhì)上和eFlash相似,都是基于浮柵來(lái)存儲(chǔ)電荷。但不同于eFlash單獨(dú)開(kāi)發(fā)工藝平臺(tái),MTP存儲(chǔ)器屬于寄生器件,其一般不能改變既定的平臺(tái)工藝步驟。而不同工藝平臺(tái)制備的MTP存儲(chǔ)器的浮柵周圍環(huán)境相差很大,比如隧穿氧化層(通常是3.3 V器件或5 V器件的柵氧層),側(cè)墻氧化層/氮化物層、刻蝕阻止層等結(jié)構(gòu)都存在差異,進(jìn)而對(duì)MTP存儲(chǔ)器數(shù)據(jù)保持能力,即非易失性,產(chǎn)生很大的影響。而MTP存儲(chǔ)器在不同工藝平臺(tái)上數(shù)據(jù)保持能力的差異為產(chǎn)品壽命和可靠性的計(jì)算帶來(lái)了困擾。因此,需要一種有理論支持并通用可行的測(cè)試方法來(lái)快速標(biāo)定MTP存儲(chǔ)器在不同工藝平臺(tái)上的數(shù)據(jù)保持能力。

本研究發(fā)現(xiàn),存儲(chǔ)器領(lǐng)域的高溫測(cè)試?yán)碚撊匀贿m用于MTP存儲(chǔ)器測(cè)試。通過(guò)試驗(yàn),重點(diǎn)驗(yàn)證了高溫對(duì)MTP存儲(chǔ)單元數(shù)據(jù)保持能力的影響。

2、MTP存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能計(jì)算

為了驗(yàn)證自主設(shè)計(jì)的MTP存儲(chǔ)器性能并計(jì)算其使用壽命,基于180nm BCD工藝設(shè)計(jì)開(kāi)發(fā)了容量為32Kibit的MTP存儲(chǔ)器,通過(guò)試驗(yàn)數(shù)據(jù)分析驗(yàn)證其可靠性并對(duì)其激活能進(jìn)行了計(jì)算。

本次試驗(yàn)用到的設(shè)備包括半導(dǎo)體分析測(cè)試儀、防震可升降溫半導(dǎo)體器件探針臺(tái)、高精度高溫烤箱、存儲(chǔ)器分析測(cè)試儀、測(cè)試機(jī)臺(tái)負(fù)載板和現(xiàn)場(chǎng)可編程邏輯門陣列(FPGA)控制板等。

2.1可靠性驗(yàn)證

常規(guī)消費(fèi)類芯片和元器件的工作溫度只需要達(dá)到0~70℃。但對(duì)于汽車類芯片和元器件,其工作溫度范圍要求比較寬,根據(jù)不同的安裝位置等有不同的需求,但一般都要高于一般民用產(chǎn)品的要求,比如發(fā)動(dòng)機(jī)艙要求-40~150℃,車身控制要求-40~125℃。MTP存儲(chǔ)器作為NVM的一種, 其可靠性驗(yàn)證流程如圖2所示。完整的可靠性驗(yàn)證包括高溫工作壽命(HTOL)測(cè)試、高溫?cái)?shù)據(jù)保持(HTDR)能力和常溫?cái)?shù)據(jù)保持(LTDR)能力測(cè)試,而HTDR能力測(cè)試最能反映器件的非易失性,因此重點(diǎn)對(duì)MTP存儲(chǔ)器的HTDR能力測(cè)試進(jìn)行試驗(yàn)設(shè)計(jì)和驗(yàn)證。HTDR能力測(cè)試是對(duì)在常溫條件下進(jìn)行過(guò)104次重復(fù)編程和擦除的MTP存儲(chǔ)器進(jìn)行進(jìn)一步高溫測(cè)試,HTDR能力測(cè)試樣品的重復(fù)編程和擦除循環(huán)數(shù)據(jù)如圖3所示, 圖中I為MTP存儲(chǔ)器的電流。

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

圖2 可靠性驗(yàn)證流程圖

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

圖3 HTDR能力測(cè)試樣品的104次重復(fù)編程和擦除循環(huán)數(shù)據(jù)

HTDR能力測(cè)試是將上述經(jīng)過(guò)104次重復(fù)編程和擦除的MTP存儲(chǔ)器樣品放置于150℃ 烤箱進(jìn)行高溫烘烤,模擬各類芯片和元器件在高溫工作條件下的可靠性試驗(yàn),并在第0、24、168、500以及1000h測(cè)試MTP存儲(chǔ)器的電流特性,HTDR能力測(cè)試結(jié)果如圖4所示。從圖中可以看出,在經(jīng)過(guò)1000h的高溫烘烤之后,MTP存儲(chǔ)器在編程和擦除過(guò)程中具有很好的電流特性,編程端和擦除端的電流并沒(méi)有明顯的變化,還保持很好的電流特性,這表明MTP存儲(chǔ)器具有很好的高溫?cái)?shù)據(jù)保持能力。

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

圖4 MTP存儲(chǔ)器的HTDR能力測(cè)試結(jié)果

2.2MTP存儲(chǔ)器的激活能計(jì)算

考慮到MTP存儲(chǔ)器的使用環(huán)境和應(yīng)用,認(rèn)為溫度是影響MTP存儲(chǔ)器產(chǎn)品老化及使用壽命的重要影響因素,采用單純考慮熱加速因子效應(yīng)而推導(dǎo)出的Arrhenius模型[9]來(lái)描述測(cè)試結(jié)果,其預(yù)估到的結(jié)果更接近真實(shí)值,模擬試驗(yàn)達(dá)到的效果更好,計(jì)算出的使用壽命更接近真實(shí)值。因此,通過(guò)試驗(yàn)測(cè)試結(jié)果并根據(jù)Arrhenius模型計(jì)算激活能來(lái)表征產(chǎn)品受溫度影響下的使用壽命。

通過(guò)2.1節(jié)的分析可以看出,該MTP eNVM在高溫150 ℃條件下具有很好的數(shù)據(jù)保持能力,因此本次試驗(yàn)設(shè)計(jì)分別在100、125和150 ℃條件下取3個(gè)編程過(guò)的樣品進(jìn)行高溫烘烤來(lái)加速M(fèi)TP失效,并定義標(biāo)號(hào)U1~U3為100 ℃下的高溫烘烤樣品,U4~U6為125 ℃下的高溫烘烤樣品,U7~U9為150 ℃下的高溫烘烤樣品,然后分別在0.1、2、24、168和500h后讀取電流值,并分別記錄在不同溫度烘烤時(shí)間(tb)下樣品的電流(I)值,9個(gè)樣品的高溫烘烤測(cè)試數(shù)據(jù)如表1所示。

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

對(duì)以上數(shù)據(jù)進(jìn)行擬合可得出I與tb的對(duì)數(shù)函數(shù)擬合曲線,如圖5~7所示。這些對(duì)數(shù)函數(shù)擬合關(guān)系可以用來(lái)計(jì)算對(duì)應(yīng)溫度下樣品的使用壽命。

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

圖5 100℃樣品的使用壽命擬合曲線

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

圖6 125℃樣品的使用壽命擬合曲線圖6 125℃樣品的使用壽命擬合曲線

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

圖7 150℃樣品的使用壽命擬合曲線

將MTP存儲(chǔ)器的讀操作與參考存儲(chǔ)單元進(jìn)行比較,參考存儲(chǔ)單元編程電流一般取值是 MTP存儲(chǔ)器的50%,考慮到編程后電流分布范圍占最大電流值的20%左右,由此可知參考存儲(chǔ)單元電流為最大電流值的40%~60%,而MTP存儲(chǔ)器編程后電流為最大電流值的 80%~100%,因此MTP存儲(chǔ)器電流降低20%可能就會(huì)出現(xiàn)失效情況,本次試驗(yàn)設(shè)計(jì)采用更加嚴(yán)格的標(biāo)準(zhǔn),假設(shè)經(jīng)過(guò)高溫烘烤電流降低15%為樣品的使用壽命極限,代入上述對(duì)數(shù)函數(shù)擬合關(guān)系,可以計(jì)算出電流降低15% 時(shí)所對(duì)應(yīng)的產(chǎn)品使用壽命,表2為9個(gè)樣品分別在烘烤溫度100、125和150℃下的使用壽命計(jì)算值,表中T為熱力學(xué)溫度。

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

根據(jù)Arrhenius模型[9]

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

式中:AF為加速因子;Ea為激活能;k為玻爾茲曼常數(shù),值為8.62×10-5 eV/K;Tl為正常使用下的熱力學(xué)溫度;Th為加速壽命測(cè)試時(shí)的環(huán)境應(yīng)力溫度。MTP受溫度的影響符合Arrhenius指數(shù)模型,則對(duì)應(yīng)溫度下MTP的使用壽命(t1)特征方程[10-11]為

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

式中A為常量。對(duì)上述1/T與使用壽命進(jìn)行擬合,可以得到如圖8所示 Ea的擬合曲線。

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

圖8 Ea的擬合曲線

通過(guò)圖8可以得到擬合關(guān)系式

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

與式(2)對(duì)比可以得到

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

因此

多次可編程非易失性存儲(chǔ)器的數(shù)據(jù)保持能力測(cè)試及其激活能分析

已知k=8.62×10-5eV/K,計(jì)算可得Ea為1.12 eV。

總結(jié)

通過(guò)前文分析,對(duì)180 nm BCD工藝設(shè)計(jì)開(kāi)發(fā)的32 Kibit容量MTP存儲(chǔ)器進(jìn)行了可靠性分析及使用激活能計(jì)算。該MTP存儲(chǔ)器具有很好的可靠性,經(jīng)過(guò)104次重復(fù)編程和擦除循環(huán)后編程端和擦除端的電流并沒(méi)有明顯的變化,具有很好的數(shù)據(jù)保持能力。通過(guò)高溫老化加速試驗(yàn),分別計(jì)算出100、125和150℃下樣品編程狀態(tài)電流降低15%的使用壽命,并對(duì)1/T與使用壽命進(jìn)行擬合,根據(jù)Arrhenius模型計(jì)算出該MTP存儲(chǔ)器的激活能為1.12 eV。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問(wèn)題卻十分常見(jiàn),不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問(wèn)題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問(wèn)題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開(kāi)關(guān)電源具有效率高的特性,而且開(kāi)關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開(kāi)關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉