日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > 智能硬件 > 人工智能AI
[導(dǎo)讀]1980年機器學(xué)習(xí)作為一支獨立的力量登上了歷史舞臺。在這之后的10年里出現(xiàn)了一些重要的方法和理論,典型的代表是:分類與回歸樹(CART,1984)、反向傳播算法(1986)、卷積神經(jīng)網(wǎng)絡(luò)(1989)。

1980年機器學(xué)習(xí)作為一支獨立的力量登上了歷史舞臺。在這之后的10年里出現(xiàn)了一些重要的方法和理論,典型的代表是:分類與回歸樹(CART,1984)、反向傳播算法(1986)、卷積神經(jīng)網(wǎng)絡(luò)(1989)。

從1990到2012年,機器學(xué)習(xí)逐漸走向成熟和應(yīng)用,在這20多年里機器學(xué)習(xí)的理論和方法得到了完善和充實,可謂是百花齊放的年代。代表性的重要成果有:支持向量機(SVM,1995)、AdaBoost算法(1997)、循環(huán)神經(jīng)網(wǎng)絡(luò)和LSTM(1997)、流形學(xué)習(xí)(2000)、隨機森林(2001)。

下面我們對部分機器學(xué)習(xí)代表算法進行介紹。

?線性回歸

在機器學(xué)習(xí)中,我們有一組輸入變量(x)用于確定輸出變量(y)。輸入變量和輸出變量之間存在某種關(guān)系,機器學(xué)習(xí)的目標(biāo)是量化這種關(guān)系。

在線性回歸中,輸入變量(x)和輸出變量(y)之間的關(guān)系表示為y=ax+b的方程。因此,線性回歸的目標(biāo)是找出系數(shù)a和b的值。這里,a是直線的斜率,b是直線的截距。上圖顯示了數(shù)據(jù)集的x和y值,線性回歸的目標(biāo)是擬合最接近大部分點的線。

?分類與回歸樹(CART)

CART是決策樹的一個實現(xiàn)方式,由ID3,C4.5演化而來,是許多基于樹的bagging、boosting模型的基礎(chǔ)。CART可用于分類與回歸。

CART是在給定輸入隨機變量x條件下輸出隨機變量y的條件概率分布,與ID3和C4.5的決策樹不同的是,ID3和C4.5生成的決策樹可以是多叉的,每個節(jié)點下的叉數(shù)由該節(jié)點特征的取值種類而定,比如特征年齡分為(青年,中年,老年),那么該節(jié)點下可分為3叉。而CART的假設(shè)決策樹為二叉樹,內(nèi)部結(jié)點特征取值為“是”和“否”。左分支取值為“是”,右分支取值為“否”。這樣的決策樹等價于遞歸地二分每一個特征,將輸入空間劃分為有限個單元,并在這些單元上預(yù)測概率分布,也就是在輸入給定的條件下輸出條件概率分布。

?隨機森林(Random Forest)

隨機森林指的是利用多棵決策樹對樣本進行訓(xùn)練并預(yù)測的一種分類器。它包含多個決策樹的分類器,并且其輸出的類別是由個別樹輸出的類別的眾數(shù)而定。隨機森林是一種靈活且易于使用的機器學(xué)習(xí)算法,即便沒有超參數(shù)調(diào)優(yōu),也可以在大多數(shù)情況下得到很好的結(jié)果。隨機森林也是最常用的算法之一,因為它很簡易,既可用于分類也能用于回歸。

其基本的構(gòu)建算法過程如下:

1)用N來表示訓(xùn)練用例(樣本)的個數(shù),M表示特征數(shù)目。

2)輸入特征數(shù)目m,用于確定決策樹上一個節(jié)點的決策結(jié)果;其中m應(yīng)遠小于M。

3)從N個訓(xùn)練用例(樣本)中以有放回抽樣的方式取樣N次,形成一個訓(xùn)練集(即bootstrap取樣),并用未抽到的用例(樣本)作預(yù)測,評估其誤差。

4)對于每一個節(jié)點,隨機選擇m個特征,決策樹上每個節(jié)點的決定都是基于這些特征確定的。根據(jù)這m個特征,計算其最佳的分裂方式。

5)每棵樹都會完整成長而不會剪枝,這有可能在建完一棵正常樹狀分類器后被采用。

?邏輯回歸

邏輯回歸最適合二進制分類(y=0或1的數(shù)據(jù)集,其中1表示默認類)例如:在預(yù)測事件是否發(fā)生時,發(fā)生的事件被分類為1(在預(yù)測人會生病或不生病,生病的實例記為1)。它是以其中使用的變換函數(shù)命名的,稱為邏輯函數(shù)h(x)=1/(1+e-x),它是一個S形曲線。

在邏輯回歸中,輸出是以缺省類別的概率形式出現(xiàn)的。因為這是一個概率,所以輸出在0-1的范圍內(nèi)。輸出(y值)通過對數(shù)轉(zhuǎn)換x值,使用對數(shù)函數(shù)h(x)=1/(1+e-x)來生成,然后應(yīng)用一個閾值來強制這個概率進入二元分類。

樸素貝葉斯(Naive Bayesian)

樸素貝葉斯法是基于貝葉斯定理與特征條件獨立假設(shè)的分類方法。樸素貝葉斯分類器基于一個簡單的假定:給定目標(biāo)值時屬性之間相互條件獨立。

通過以上定理和“樸素”的假定,我們知道:

P(Category|Document)=P(Document|Category)*P(Category)/P(Document)

樸素貝葉斯的基本方法:在統(tǒng)計數(shù)據(jù)的基礎(chǔ)上,依據(jù)條件概率公式,計算當(dāng)前特征的樣本屬于某個分類的概率,選擇最大的概率分類。

對于給出的待分類項,求解在此項出現(xiàn)的條件下各個類別出現(xiàn)的概率。哪個概率最大,就認為此待分類項屬于哪個類別。其計算流程表述如下:

1)x={a1,a2,...,am}為待分類項,每個ai為x的一個特征屬性

2)有類別集合C={y1,y2,...,yn}

3)計算P(y1|x),P(y2|x),...,P(yn|x)

4)如果P(yk|x)=max{P(y1|x)

?k最近鄰(kNN)

kNN(k-Nearest Neighbor)的核心思想是如果一個樣本在特征空間中的k個最相鄰的樣本中的大多數(shù)屬于某一個類別,則該樣本也屬于這個類別,并具有這個類別上樣本的特性。該方法在確定分類決策上只依據(jù)最鄰近的一個或者幾個樣本的類別來決定待分樣本所屬的類別。kNN方法在做類別決策時,只與極少量的相鄰樣本有關(guān)。由于kNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對于類域的交叉或重疊較多的待分樣本集來說,kNN方法較其他方法更為適合。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉