日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 智能硬件 > 人工智能AI
[導讀]在工業(yè)界中,數據科學或機器學習的主要焦點是更偏“應用”地解決復雜的現實世界至關重要的問題,而不是理論上有效地應用這些模型于正確的數據。機器學習模型本身由算法組成,該算法試圖從數據中學習潛在模式和關系,而無需硬編碼固定規(guī)則。因此,解釋模型如何對業(yè)務起作用總是會帶來一系列挑戰(zhàn)。有一些領域的行業(yè),特別是在保險或銀行等金融領域,數據科學家通常最終不得不使用更傳統(tǒng)的機器學習模型(線性或基于樹的)。原因是模型可解釋性對于企業(yè)解釋模型所采取的每個決策非常重要。

在工業(yè)界中,數據科學或機器學習的主要焦點是更偏“應用”地解決復雜的現實世界至關重要的問題,而不是理論上有效地應用這些模型于正確的數據。機器學習模型本身由算法組成,該算法試圖從數據中學習潛在模式和關系,而無需硬編碼固定規(guī)則。因此,解釋模型如何對業(yè)務起作用總是會帶來一系列挑戰(zhàn)。有一些領域的行業(yè),特別是在保險或銀行等金融領域,數據科學家通常最終不得不使用更傳統(tǒng)的機器學習模型(線性或基于樹的)。原因是模型可解釋性對于企業(yè)解釋模型所采取的每個決策非常重要。

殘酷的現實是,如果沒有對機器學習模型或數據科學pipeline如何運作的合理理解,現實中的項目很少成功?,F實中的數據科學項目,通常會有業(yè)務和技術兩方面。數據科學家通常致力于構建模型并為業(yè)務提供解決方案。但是,企業(yè)可能不知道模型如何工作的復雜細節(jié)。

數據科學從業(yè)者將知道存在典型的模型可解釋性與模型性能權衡。這里需要記住的一點是,模型性能不是運行或執(zhí)行性能,而是模型在決策中的準確程度。有幾種模型,包括簡單的線性模型甚至是基于樹的模型,它們可以很容易地解釋模型為獲得特定的洞察力或預測而做出的決策,但是你可能需要犧牲模型性能,因為它們總是不能產生最好的結果是由于高偏

差(線性模型)或高方差的固有問題,導致過度擬合(完全成長的樹模型)。更復雜的模型,如集合模型和深度學習模型系列通常會產生更好的性能,但被認為是黑盒模型,因為很難解釋模型如何真正做出決定。

理解模型可解釋性

模型解釋作為一個概念仍然主要是理論和主觀的。任何機器學習模型的核心都有一個響應函數,它試圖映射和解釋獨立(輸入)自變量和(目標或響應)因變量之間的關系和模式。當模型預測或尋找見解時,需要做出某些決定和選擇。模型解釋試圖理解和解釋響應函數所做出的這些決定,即what,why以及how。模型解釋的關鍵是透明度,質疑能力以及人類理解模型決策的難易程度。模型解釋的三個最重要的方面解釋如下。

是什么驅動了模型的預測?我們應該能夠查詢我們的模型并找出潛在的特征交互,以了解哪些特征在模型的決策策略中可能是重要的。這確保了模型的公平性。

為什么模型會做出某個決定?我們還應該能夠驗證并證明為什么某些關鍵特征在預測期間驅動模型所做出的某些決策時負有責任。這確保了模型的可靠性。我們如何信任模型預測?我們應該能夠評估和驗證任何數據點以及模型如何對其進行決策。對于模型按預期工作的關鍵利益相關者而言,這應該是可證明且易于理解的。這確保了模型的透明度。

在比較模型時,除了模型性能之外,如果模型的決策比其他模型的決策更容易理解,那么模型被認為比其他模型具有更好的可解釋性。

可解釋性的重要性

在解決機器學習問題時,數據科學家往往傾向于關注模型性能指標,如準確性,精確度和召回等等。這在大多數圍繞數據科學和機器學習的在線競賽中也很普遍。但是,指標只能說明模型預測決策的部分故事。隨著時間的推移,由于環(huán)境中的各種因素導致的模型概念漂移,性能可能會發(fā)生變化。因此,了解推動模型采取某些決策的因素至關重要。

如果一個模型工作得很好,為什么還要深入挖掘呢?在解決現實世界中的數據科學問題時,為了讓企業(yè)信任您的模型預測和決策,他們會不斷提出“我為什么要相信您的模型?”這一問題,這一點非常有意義。如果一個人患有癌癥或糖尿病,一個人可能對社會構成風險,或者即使客戶會流失,您是否會對預測和做出決策(如果有的話)感到滿意?也許不是,如果我們能夠更多地了解模型的決策過程(原因和方式),我們可能會更喜歡它。這使我們更加透明地了解模型為何做出某些決策,在某些情況下可能出現的問題,并且隨著時間的推移它有助于我們在這些機器學習模型上建立一定程度的信任。

了解預測背后的原因在評估信任方面非常重要,如果計劃基于預測采取行動,或者選擇是否部署新模型,那么這是至關重要的。無論人類是直接使用機器學習分類器作為工具,還是在其他產品中部署模型,仍然存在一個至關重要的問題:如果用戶不信任模型或預測,他們就不會使用它。

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉