日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁(yè) > 消費(fèi)電子 > 消費(fèi)電子
[導(dǎo)讀]深度學(xué)習(xí)需要大量的計(jì)算。它通常包含具有許多節(jié)點(diǎn)的神經(jīng)網(wǎng)絡(luò),并且每個(gè)節(jié)點(diǎn)都有許多需要在學(xué)習(xí)過程中必須不斷更新的連接。換句話說,神經(jīng)網(wǎng)絡(luò)的每一層都有成百上千個(gè)相同的人工神經(jīng)元在執(zhí)行相同的計(jì)算。

深度學(xué)習(xí)需要大量的計(jì)算。它通常包含具有許多節(jié)點(diǎn)的神經(jīng)網(wǎng)絡(luò),并且每個(gè)節(jié)點(diǎn)都有許多需要在學(xué)習(xí)過程中必須不斷更新的連接。換句話說,神經(jīng)網(wǎng)絡(luò)的每一層都有成百上千個(gè)相同的人工神經(jīng)元在執(zhí)行相同的計(jì)算。因此,神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)適用于GPU(圖形處理單元)可以高效執(zhí)行的計(jì)算類型(GPU是專門為并行計(jì)算相同指令而設(shè)計(jì)的)。

隨著深度學(xué)習(xí)和人工智能在過去幾年的迅速發(fā)展,我們也看到了許多深度學(xué)習(xí)框架的引入。深度學(xué)習(xí)框架的創(chuàng)建目標(biāo)是在GPU上高效運(yùn)行深度學(xué)習(xí)系統(tǒng)。這些深度學(xué)習(xí)框架都依賴于計(jì)算圖的概念,計(jì)算圖定義了需要執(zhí)行的計(jì)算順序。在這些框架中你使用的是一種可以建立計(jì)算圖的語(yǔ)言,并且語(yǔ)言的執(zhí)行機(jī)制與其宿主語(yǔ)言本身的機(jī)制有所不同。然后,計(jì)算圖可以并行地在目標(biāo)GPU中優(yōu)化和運(yùn)行。

在這篇文章中,我想向大家介紹推動(dòng)深度學(xué)習(xí)發(fā)展的5個(gè)主力框架。這些框架使數(shù)據(jù)科學(xué)家和工程師更容易為復(fù)雜問題構(gòu)建深度學(xué)習(xí)解決方案,并執(zhí)行更復(fù)雜的任務(wù)。這只是眾多開源框架中的一小部分,由不同的科技巨頭支持,并相互推動(dòng)更快創(chuàng)新。

隨著人工智能技術(shù)的不斷發(fā)展,機(jī)器學(xué)習(xí)在實(shí)際應(yīng)用中得到了廣泛的應(yīng)用,其中機(jī)器學(xué)習(xí)框架是構(gòu)建、訓(xùn)練和部署機(jī)器學(xué)習(xí)模型的重要工具。本文將介紹常見的機(jī)器學(xué)習(xí)框架,包括TensorFlow、PyTorch、Keras、Scikit-learn、MXNet、Caffe、Theano和Torch。

1、TensorFlow

TensorFlow是由Google開發(fā)的開源深度學(xué)習(xí)框架,它支持多種編程語(yǔ)言,包括Python、C++、Java和Go等。TensorFlow的特點(diǎn)是高度靈活、可擴(kuò)展和可移植性強(qiáng),適用于各種類型的機(jī)器學(xué)習(xí)任務(wù),包括圖像識(shí)別、自然語(yǔ)言處理、語(yǔ)音識(shí)別等。

2、PyTorch

PyTorch是由Facebook開發(fā)的深度學(xué)習(xí)框架,它具有易用性和高度靈活性,支持動(dòng)態(tài)計(jì)算圖和靜態(tài)計(jì)算圖兩種方式,可以讓開發(fā)者更加方便地進(jìn)行模型構(gòu)建和訓(xùn)練。與TensorFlow相比,PyTorch更適用于研究和實(shí)驗(yàn)性開發(fā)。

3、Keras

Keras是一個(gè)基于TensorFlow、Theano和CNTK等深度學(xué)習(xí)框架的高級(jí)神經(jīng)網(wǎng)絡(luò)API,它支持快速構(gòu)建和訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型,并且高度可定制。Keras的特點(diǎn)是易學(xué)易用、高效和靈活性強(qiáng),適用于各種類型的機(jī)器學(xué)習(xí)任務(wù)。

4、Scikit-learn

Scikit-learn是一個(gè)用于數(shù)據(jù)挖掘和機(jī)器學(xué)習(xí)的Python庫(kù),它包括各種機(jī)器學(xué)習(xí)算法和數(shù)據(jù)預(yù)處理功能。Scikit-learn的特點(diǎn)是易學(xué)易用、功能豐富、穩(wěn)定性強(qiáng),并且有著廣泛的社區(qū)支持。

5、MXNet

MXNet是由Amazon開發(fā)的深度學(xué)習(xí)框架,它支持多種編程語(yǔ)言,包括Python、Java和Scala等。MXNet的特點(diǎn)是高度靈活、可擴(kuò)展性強(qiáng)、性能優(yōu)秀,并且適用于大規(guī)模機(jī)器學(xué)習(xí)任務(wù)。

6、Caffe

Caffe是由加州大學(xué)伯克利分校開發(fā)的深度學(xué)習(xí)框架,旨在支持卷積神經(jīng)網(wǎng)絡(luò)和深度學(xué)習(xí)模型的訓(xùn)練和部署。Caffe的特點(diǎn)是易于學(xué)習(xí)、高度靈活、性能優(yōu)秀,適用于各種類型的機(jī)器學(xué)習(xí)任務(wù)。

7、Theano

Theano是一個(gè)用于深度學(xué)習(xí)的Python庫(kù),它提供高效的數(shù)學(xué)庫(kù)和自動(dòng)微分機(jī)制,可以方便地構(gòu)建各種類型的神經(jīng)網(wǎng)絡(luò)模型。Theano的特點(diǎn)是高度優(yōu)化、易于使用、支持GPU加速,并且有著廣泛的社區(qū)支持。

8、Torch

Torch是一個(gè)基于Lua語(yǔ)言的科學(xué)計(jì)算框架,主要用于機(jī)器學(xué)習(xí)和計(jì)算機(jī)視覺任務(wù)。Torch的特點(diǎn)是易于使用、高度靈活、性能優(yōu)秀,并且有著廣泛的社區(qū)支持。

除了上述常見的機(jī)器學(xué)習(xí)框架外,還有一些其他的框架也值得一提,比如CNTK、Chainer和PaddlePaddle等。這些框架都有其自身的特點(diǎn)和優(yōu)缺點(diǎn),可以根據(jù)具體的任務(wù)需求進(jìn)行選擇。

總的來說,機(jī)器學(xué)習(xí)框架在構(gòu)建、訓(xùn)練和部署機(jī)器學(xué)習(xí)模型中起著至關(guān)重要的作用,開發(fā)者可以根據(jù)不同的需求和技術(shù)水平選擇適合自己的框架。在未來,隨著機(jī)器學(xué)習(xí)技術(shù)的不斷發(fā)展和應(yīng)用領(lǐng)域的不斷拓展,機(jī)器學(xué)習(xí)框架也將不斷更新和優(yōu)化,為人工智能技術(shù)的發(fā)展做出更大的貢獻(xiàn)。

機(jī)器學(xué)習(xí)工程師是開發(fā)產(chǎn)品和構(gòu)建算法團(tuán)隊(duì)中很重要的一部分,他們和數(shù)據(jù)專家密切合作來了解理論知識(shí)和行業(yè)應(yīng)用。數(shù)據(jù)專家和機(jī)器學(xué)習(xí)工程師的主要區(qū)別是:

機(jī)器學(xué)習(xí)工程師構(gòu)建、開發(fā)和維護(hù)機(jī)器學(xué)習(xí)系統(tǒng)的產(chǎn)品

數(shù)據(jù)專家進(jìn)行調(diào)查研究形成有關(guān)于機(jī)器學(xué)習(xí)項(xiàng)目的想法,然后分析來理解機(jī)器學(xué)習(xí)系統(tǒng)的度量影響

下面就來介紹一下目前***的15個(gè)機(jī)器學(xué)習(xí)框架:

1. Apache Singa

Apache Singa是一個(gè)用于在大型數(shù)據(jù)集上訓(xùn)練深度學(xué)習(xí)的通用分布式深度學(xué)習(xí)平臺(tái),它是基于分層抽象的簡(jiǎn)單開發(fā)模型設(shè)計(jì)的。它還支持各種當(dāng)前流行的深度學(xué)習(xí)模型,有前饋模型(卷積神經(jīng)網(wǎng)絡(luò),CNN),能量模型(受限玻爾茲曼機(jī),RBM和循環(huán)神經(jīng)網(wǎng)絡(luò),RNN),還為用戶提供了許多內(nèi)嵌層。

2. Amazon Machine Learning(AML)

Amazon Machine Learning(AML)是一種讓各種級(jí)別使用機(jī)器學(xué)習(xí)技術(shù)的開發(fā)人員可輕松掌握的一個(gè)服務(wù),提供了視覺工具和向?qū)?,可以指?dǎo)您在不必學(xué)習(xí)復(fù)雜的機(jī)器學(xué)習(xí)算法和技術(shù)的情況下建立機(jī)器學(xué)習(xí)。

3. Azure ML Studio

Azure ML Studio允許微軟Azure的用戶創(chuàng)建和訓(xùn)練模型,隨后將這些模型轉(zhuǎn)化為能被其他服務(wù)使用的API。盡管您可以將自己的Azure存儲(chǔ)鏈接到更大模型的服務(wù),但是每個(gè)賬戶模型數(shù)據(jù)的存儲(chǔ)容量最多不超過10GB。在Azure中有大量的算法可供使用,這要感謝微軟和一些第三方。甚至都不需要注冊(cè)賬號(hào),就可以匿名登錄,使用Azure ML Studio服務(wù)長(zhǎng)達(dá)8小時(shí)。

4. Caffe

Caffe是由伯克利視覺學(xué)習(xí)中心(BLVC)和社區(qū)貢獻(xiàn)者們基于BSD-2-協(xié)議開發(fā)的一個(gè)深度學(xué)習(xí)框架,它秉承“表示、效率和模塊化”的開發(fā)理念。模型和組合優(yōu)化通過配置而不是硬編碼實(shí)現(xiàn),并且用戶可根據(jù)需要在CPU處理和GPU處理之間進(jìn)行切換,Caffe的高效性使其在實(shí)驗(yàn)研究和產(chǎn)業(yè)部署中的表現(xiàn)很***,使用單個(gè)NVIDIA K40 GPU處理器每天即可處理超過六千萬(wàn)張圖像 。

5. H2O

H2O使人輕松地應(yīng)用數(shù)學(xué)和預(yù)測(cè)分析來解決當(dāng)今***挑戰(zhàn)性的商業(yè)問題,它巧妙的結(jié)合了目前在其他機(jī)器學(xué)習(xí)平臺(tái)還未被使用的獨(dú)有特點(diǎn):***開源技術(shù),易于使用的WebUI和熟悉的界面,支持常見的數(shù)據(jù)庫(kù)和不同文件類型。用H2O,您可以使用現(xiàn)有的語(yǔ)言和工具。此外,也還可以無縫擴(kuò)展到Hadoop環(huán)境中。

6. Massive Online Analysis (MOA)

Massive Online Analysis (MOA)是目前***的數(shù)據(jù)流挖掘開源框架,擁有一個(gè)非?;钴S的社區(qū)。它包含一系列的機(jī)器學(xué)習(xí)算法(分類,回歸,聚類,離群檢測(cè),概念漂移檢測(cè)和推薦系統(tǒng))和評(píng)價(jià)工具。和WEKA項(xiàng)目一樣,MOA 也是用Java編寫,但擴(kuò)展性更好。

7. MLlib (Spark)

MLlib (Spark)是Apache Spark的機(jī)器學(xué)習(xí)庫(kù),目的是讓機(jī)器學(xué)習(xí)實(shí)現(xiàn)可伸縮性和易操作性,它由常見的學(xué)習(xí)算法和實(shí)用程序組成,包括分類、回歸、聚類,協(xié)同過濾、降維,同時(shí)包括底層優(yōu)化原生語(yǔ)言和高層管道API。

8. Mlpack

Mlpack是一個(gè)基于C++的基礎(chǔ)學(xué)習(xí)庫(kù) ,最早于2011年推出,據(jù)庫(kù)的開發(fā)者聲稱,它秉承“可擴(kuò)展性、高效性和易用性”的理念來設(shè)計(jì)的。執(zhí)行Mlpack有兩種方法:通過快速處理簡(jiǎn)易的“黑盒”操作命令行執(zhí)行的緩存,或者借助C++ API處理較為復(fù)雜的工作。Mlpack可提供簡(jiǎn)單的能被整合到大型的機(jī)器學(xué)習(xí)解決方案中的命令行程序和C++的類。

9. Pattern

Pattern是Python編程語(yǔ)言的web挖掘組件,有數(shù)據(jù)挖掘工具( Google、Twitter 、Wikipedia API,網(wǎng)絡(luò)爬蟲,HTML DOM解析器),自然語(yǔ)言處理(詞性標(biāo)注,n-gram搜索,情感分析,WordNet接口),機(jī)器學(xué)習(xí)(向量空間模型,聚類,支持向量機(jī)),網(wǎng)絡(luò)分析和可視化。

10. Scikit-Learn

Scikit-Learn為了數(shù)學(xué)和科學(xué)工作,基于現(xiàn)有的幾個(gè)Python包(Numpy,SciPy和matplotlib)拓展了Python的使用范圍。最終生成的庫(kù)既可用于交互式工作臺(tái)應(yīng)用程序,也可嵌入到其他軟件中進(jìn)行復(fù)用。該工具包基于BSD協(xié)議,是完全免費(fèi)開源的,可重復(fù)利用。Scikit-Learn中含有多種用于機(jī)器學(xué)習(xí)任務(wù)的工具,如聚類,分類,回歸等。Scikit-Learn是由擁有眾多開發(fā)者和機(jī)器學(xué)習(xí)專家的大型社區(qū)開發(fā)的,因此,Scikit-Learn中最前沿的技術(shù)往往會(huì)在很短時(shí)間內(nèi)被開發(fā)出來。

11. Shogu

Shogu是最早的機(jī)器學(xué)習(xí)庫(kù)之一,它創(chuàng)建于1999年,用C++開發(fā),但并不局限于C++環(huán)境。借助SWIG庫(kù),Shogun適用于各種語(yǔ)言環(huán)境,如Java,Python,c#,Ruby,R,Lua,Octave和Mablab。Shogun 旨在面向廣泛的特定類型和學(xué)習(xí)配置環(huán)境進(jìn)行統(tǒng)一的大規(guī)模學(xué)習(xí),如分類,回歸或探索性數(shù)據(jù)分析。

12. TensorFlow

TensorFlow是一個(gè)使用數(shù)據(jù)流圖進(jìn)行數(shù)值運(yùn)算的開源軟件庫(kù),它實(shí)現(xiàn)了數(shù)據(jù)流圖,其中,張量(“tensors”)可由一系列圖形描述的算法來處理,數(shù)據(jù)在該系統(tǒng)中的變化被稱為“流”,由此而得名。數(shù)據(jù)流可用C++或Python編碼后在CPU或GPU的設(shè)備上運(yùn)行。

13. Theano

Theano是一個(gè)基于BSD協(xié)議發(fā)布的可定義、可優(yōu)化和可數(shù)值計(jì)算的Phython庫(kù)。使用Theano也可以達(dá)到與用C實(shí)現(xiàn)大數(shù)據(jù)處理的速度相媲美,是支持高效機(jī)器學(xué)習(xí)的算法。

14.Torch

Torch是一種廣泛支持把GPU放在首位的機(jī)器學(xué)習(xí)算法的科學(xué)計(jì)算框架。由于使用了簡(jiǎn)單快速的腳本語(yǔ)言LuaJIT和底層的C/CUDA來實(shí)現(xiàn),使得該框架易于使用且高效。Torch目標(biāo)是讓您通過極其簡(jiǎn)單的過程、***的靈活性和速度建立自己的科學(xué)算法。Torch是基于Lua開發(fā)的,擁有一個(gè)龐大的生態(tài)社區(qū)驅(qū)動(dòng)庫(kù)包設(shè)計(jì)機(jī)器學(xué)習(xí)、計(jì)算機(jī)視覺、信號(hào)處理,并行處理,圖像,視頻,音頻和網(wǎng)絡(luò)等。

15. Veles

Veles是一套用C++開發(fā)的面向深層學(xué)習(xí)應(yīng)用程序的分布式平臺(tái),不過它利用Python在節(jié)點(diǎn)間自動(dòng)操作與協(xié)作任務(wù)。在相關(guān)數(shù)據(jù)集中到該集群之前,可對(duì)數(shù)據(jù)進(jìn)行分析與自動(dòng)標(biāo)準(zhǔn)化調(diào)整,且REST API允許將各已訓(xùn)練模型立即添加至生產(chǎn)環(huán)境當(dāng)中,它側(cè)重于性能和靈活性。Veles幾乎沒有硬編碼,可對(duì)所有廣泛認(rèn)可的網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)進(jìn)行訓(xùn)練,如全卷積神經(jīng)網(wǎng)絡(luò),卷積神經(jīng)網(wǎng)絡(luò),循環(huán)神經(jīng)網(wǎng)絡(luò)等。

聲明:該篇文章為本站原創(chuàng),未經(jīng)授權(quán)不予轉(zhuǎn)載,侵權(quán)必究。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉