變頻器(Variable-frequency Drive,VFD)是應用變頻技術與微電子技術,通過改變電機工作電源頻率方式來控制交流電動機的電力控制設備。 [1]變頻器主要由整流(交流變直流)、濾波、逆變(直流變交流)、制動單元、驅(qū)動單元、檢測單元微處理單元等組成。變頻器靠內(nèi)部IGBT的開斷來調(diào)整輸出電源的電壓和頻率,根據(jù)電機的實際需要來提供其所需要的電源電壓,進而達到節(jié)能、調(diào)速的目的,另外,變頻器還有很多的保護功能,如過流、過壓、過載保護等等。隨著工業(yè)自動化程度的不斷提高,變頻器也得到了非常廣泛的應用。
20世紀60年代以后,電力電子器件普遍應用了晶閘管及其升級產(chǎn)品。但其調(diào)速性能遠遠無法滿足需要。1968年以丹佛斯為代表的高技術企業(yè)開始批量化生產(chǎn)變頻器,開啟了變頻器工業(yè)化的新時代。 [3]20世紀70年代開始,脈寬調(diào)制變壓變頻(PWM-VVVF)調(diào)速的研究得到突破,20世紀80年代以后微處理器技術的完善使得各種優(yōu)化算法得以容易的實現(xiàn)。 [3]20世紀80年代中后期,美、日、德、英等發(fā)達國家的 VVVF變頻器技術實用化,商品投入市場,得到了廣泛應用。 最早的變頻器可能是日本人買了英國專利研制的。不過美國和德國憑借電子元件生產(chǎn)和電子技術的優(yōu)勢,高端產(chǎn)品迅速搶占市場。
相比較國外變頻器的發(fā)展狀況,我國的變頻器應用起步較晚,直到20世紀90年代末期才得到較為廣泛的推廣。國內(nèi)變頻技術發(fā)展狀況,可以概括為:變頻器的整體技術相對落后,和國外在變頻調(diào)速研究上取得的先進成果比,存在著較大的差距;變頻器使用的核心部件技術空白,目前來說,變頻器的生產(chǎn)中需要的關鍵功率器件,在國內(nèi)幾乎沒有廠家可以生產(chǎn),導致我們核心技術受制于國外,必須依靠進口;主要產(chǎn)品集中在低壓產(chǎn)品和中低端市場。由于產(chǎn)品可靠性和工藝水平不高,目前國內(nèi)變頻器產(chǎn)品主要面向低壓和對性能要求一般的市場,高性能、大功率市場主要被國外大公司占領。 [11]步入21世紀后,國產(chǎn)變頻器逐步崛起,現(xiàn)已逐漸搶占高端市場。上海和深圳成為國產(chǎn)變頻器發(fā)展的前沿陣地。
電力電子器件的自關斷化、模塊化,變流電路開關模式的高頻化和控制手段的全數(shù)字化促進了變頻電源裝置的小型化、多功能化、高性能化。尤其是控制手段的全數(shù)字化,利用了微型計算機的巨大的信息處理能力,其軟件功能不斷強化,使變頻裝置的靈活性和適應性不斷增強?,F(xiàn)在中小容量的一般用途的變頻器已經(jīng)實現(xiàn)了通用化。采用大功率自關斷開關器件(GTO、BJT、IGBT)作為主開關器件的正弦脈寬調(diào)制式(SPWM)變頻器,已成為通用變頻器的主流。
盡管專用雙模控制器和低端定點DSP架構已經(jīng)問世,但是意法半導體仍然選擇使用Cortex-M3內(nèi)核開發(fā)STM32微控制器。這個解決方案可很好地滿足大量的無刷電機驅(qū)動器的要求,從一次性工程費用的角度看,該解決方案的優(yōu)點是采用行業(yè)標準的ARM?內(nèi)核和標準微控制器的成本效益。
基于Harvard架構,這個32位RISC采用Thumb2指令集,提供16位和32位指令。對比純32位代碼,這個指令集能夠大幅提高代碼密度,同時保留原有ARM7指令集的多數(shù)優(yōu)點(附加優(yōu)化的乘加運算和硬件除法指令)。
電機控制系統(tǒng)要求微控制器須具備卓越的實時響應性(中斷延時短)、純處理功能(如單周期乘法)以及優(yōu)異的控制性能(當處理非序列執(zhí)行流和條件轉(zhuǎn)移指令時)。Cortex-M3能夠滿足所有這些要求。例如,當時鐘頻率是72MHz時,在25μs內(nèi)對一個永磁電機完成一次無傳感器磁場定向控制,這相當于在10 kHz采樣率下25% 的CPU負荷。
意法半導體擴大32位STM32微控制器(MCU)支持的電機矢量控制函數(shù)庫,新增了支持單旁路無傳感器控制、內(nèi)部永磁(IPM)電機控制和永磁同步(PMSM)電機弱磁控制的算法。目前市場上大約已有40種電機控制應用采用了意法半導體的基于Cortex-M3的STM32微控制器。 在設計人員目前可以獲得的新算法中,單旁路電流感應支持功能只需要一個電流感應電阻器,比需要三個電阻器的普通無傳感器控制機制更加節(jié)省系統(tǒng)成本。單旁路電流感應是意法半導體開發(fā)的一項專利技術,具有直流總線電壓利用率高、電流失真小和可聽噪聲低等優(yōu)點。通過增加一個"最大化轉(zhuǎn)矩電流比"(MTPA)控制算法,擴大的函數(shù)庫給設計人員提供了更大的自由設計空間,使他們能夠靈活地定義無刷IPM電機的電氣參數(shù),滿足實際應用對電機的高功率密度和高速性能的需求?;谶@些新的算法,開發(fā)人員可以充分利用STM32豐富的電機控制外設,包括STM32集成的兩個三相PWM定時器,使一個微控制器可以同時控制兩個無刷電機。通過打破一個微控制器控制一個電機的規(guī)則,設計人員使用STM32可以節(jié)省成本,降低設計尺寸和功耗,而且不會對性能有任何影響。微控制器集成的三個模數(shù)轉(zhuǎn)換器能夠支持高精度電機驅(qū)動器用的三路采樣保持電流捕獲。因為STM32采用先進的ARMCortex-M3CPU工業(yè)標準架構,用戶在STM32上開發(fā)電機控制解決方案要比使用企業(yè)專有架構更節(jié)省時間。
即使最復雜的算法幾乎也無法修正不精確的模擬測量值,但是,在某種程度上,電機驅(qū)動系統(tǒng)的總體性能取決于模數(shù)轉(zhuǎn)換器的質(zhì)量。STM32F103芯片內(nèi)置三個采樣率為1MSps的12位模數(shù)轉(zhuǎn)換器,在整個溫度和電壓范圍內(nèi),總不可調(diào)整誤差 (TUE)低于5 LSB.模數(shù)轉(zhuǎn)換器的數(shù)字接口有三個主要功能:首先,使CPU擺脫簡單控制任務和數(shù)據(jù)處理;其次連接芯片的其余部件(中斷請求、DMA請求、觸發(fā)輸入);最后,使STM32的多路轉(zhuǎn)換器同步操作。
在這些對無刷電機控制有用的功能中,我們首先考慮通道讀序列發(fā)生器。對比傳統(tǒng)的掃描電路(按照模擬輸入序號,按序轉(zhuǎn)換一定數(shù)量的通道), 在一個16個轉(zhuǎn)換通道組成的順列(例如:Ch3, Ch3, Ch0, Ch11)內(nèi),序列發(fā)生器可按任何順序轉(zhuǎn)換通道,當設計人員在設計印刷電路板時,這個功能給設計人員帶來更高的設計靈活性,為實現(xiàn)平均轉(zhuǎn)換目的,準許對同一通道進行多次采樣(在一個序列內(nèi)),當整個序列轉(zhuǎn)換完畢后,DMA通道將轉(zhuǎn)換結(jié)果送到RAM,中斷處理程序產(chǎn)生一個中斷請求。
在檢測電機相位電流的過程中,瞬變電壓在功率開關上產(chǎn)生的噪聲(在離線開關應用中,典型噪聲達到幾百個V/μs)是引起讀取誤差的一個重要原因,可能導致測量結(jié)果的信噪比非常低。解決方案是使模數(shù)轉(zhuǎn)換器與控制功率級的定時器同步:因為換向時刻可以預定(由3 PWM定時器的比較寄存器定義),所以可以使用一個額外比較通道在換向時刻稍前或稍后觸發(fā)模數(shù)轉(zhuǎn)換操作?;谶@個原因,STM32啟用了第二個序列發(fā)生器(又稱注入序列發(fā)生器),該序列發(fā)生器的優(yōu)先級高于正常序列發(fā)生器,可以用一個不能延遲的新轉(zhuǎn)換操作使當前的轉(zhuǎn)換操作中斷。通常情況下,正常序列發(fā)生器負責"內(nèi)部管理"轉(zhuǎn)換,連續(xù)檢測溫度或直流總線電壓(作為后臺任務),然后通過DMA通道發(fā)送到RAM,而注入序列發(fā)生器則將處理時間關鍵的轉(zhuǎn)換操作,并將轉(zhuǎn)換結(jié)果存儲在模數(shù)轉(zhuǎn)換器寄存器(將會產(chǎn)生一個中斷,但是不能接受延時)。
對于一個能夠執(zhí)行先進的電機控制功能的通用微控制器,擁有微控制器是一回事,而開發(fā)輕松入門卻是另一回事。利用軟硬件工具可以把這個問題的兩個方面都處理好。首先是擁有一套電機控制開發(fā)入門工具,包含測試工具(JTAG探針和光隔離器)、 微控制器芯片以及功率級電路板和演示用PMSM電機,這套工具用于產(chǎn)品性能評估和開發(fā)用途。模塊化設計有助于升級演示應用(例如雙電機控制微控制器電路板),評估多個(或定制)功率級。最后,意法半導體為STM32客戶免費提供電機控制軟件庫。2.0版電機控制軟件庫利用頭文件內(nèi)的一個簡單且低廉的 #define聲明列表支持各種配置。
軟件庫包含交流感應電機和同步電機的磁場定向控制算法,為簡化代碼的可讀性和可維護性,這些算法采用C編程語言,再次證明了現(xiàn)代編譯器的效率。該軟件庫還針對PMSM電機提供一個穩(wěn)健的無傳感器控制算法(基于磁通觀測器),以及一個超高速內(nèi)部永磁電機 (IPM)專用控制算法。當然,該軟件還支持普通轉(zhuǎn)速和位置傳感器(增量編碼器、霍爾傳感器或轉(zhuǎn)速傳感器)。通過使用隔離傳感器或分流器,STM32支持三種電流檢測方法。STM32外設可以實現(xiàn)一個創(chuàng)新的單電流檢測方法,利用成本最低的配置(一個簡單的獨特的電阻器)執(zhí)行矢量控制。因為能夠最大限度降低本征電流失真率,這項技術已取得專利權。
意法半導體目前的主要開發(fā)項目是控制電機直到靜止狀態(tài)的無傳感器永磁電機控制和內(nèi)置功率因數(shù)校正功能的雙電機控制。最近,意法半導體成功演示了單電流檢測方法,僅一個STM32微控制器就能執(zhí)行兩個單電流檢測矢量控制功能,同時還用一個40 kHz的控制回路管理PFC級(詳見圖1)。
圖1:STM32F103HD可以同時處理雙電機控制和數(shù)字PF
圖 2:STM32F103中容量微控制器結(jié)構框圖
圖 3:STM32:強固的增長基礎
從功率開關分立器件,到復雜的系統(tǒng)芯片,意法半導體承諾以其獨有的產(chǎn)品組合長期支持電機控制市場。STM32微控制器產(chǎn)品線將繼續(xù)沿四個新方向部署,如圖3所示,其中兩個方向適用于電機控制。第一個產(chǎn)品線將面向低成本市場,開發(fā)低端的16位電機控制微控制器。另一個產(chǎn)品線以高性能為訴求,面向需要更高處理性能、更大存儲容量和高帶寬接口的應用。如此寬廣的產(chǎn)品組合結(jié)合Cortex-M3內(nèi)核,勢必確立STM32架構適用于現(xiàn)在和未來電機驅(qū)動的多功能性。





