日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 單片機 > 單片機
[導(dǎo)讀]棧增長和大端/小端問題是和CPU相關(guān)的兩個問題.1,首先來看:棧(STACK)的問題.函數(shù)的局部變量,都是存放在"棧"里面,棧的英文是:STACK.STACK的大小,我們可以在stm32的啟動文件里面設(shè)置,以戰(zhàn)艦stm32開發(fā)板為例,在startup_s

棧增長和大端/小端問題是和CPU相關(guān)的兩個問題.

1,首先來看:棧(STACK)的問題.

函數(shù)的局部變量,都是存放在"棧"里面,棧的英文是:STACK.STACK的大小,我們可以在stm32的啟動文件里面設(shè)置,以戰(zhàn)艦stm32開發(fā)板為例,在startup_stm32f10x_hd.s里面,開頭就有:

Stack_Size EQU 0x00000800

表示棧大小是0X800,也就是2048字節(jié).這樣,CPU處理任務(wù)的時候,函數(shù)局部變量做多可占用的大小就是:2048字節(jié),注意:是所有在處理的函數(shù),包括函數(shù)嵌套,遞歸,等等,都是從這個"棧"里面,來分配的.
所以,如果一個函數(shù)的局部變量過多,比如在函數(shù)里面定義一個u8 buf[512],這一下就占了1/4的棧大小了,再在其他函數(shù)里面來搞兩下,程序崩潰是很容易的事情,這時候,一般你會進入到hardfault....
這是初學(xué)者非常容易犯的一個錯誤.切記不要在函數(shù)里面放N多局部變量,尤其有大數(shù)組的時候!

對于棧區(qū),一般棧頂,也就是MSP,在程序剛運行的時候,指向程序所占用內(nèi)存的最高地址.比如附件里面的這個程序序,內(nèi)存占用如下圖:


圖中,我們可以看到,程序總共占用內(nèi)存:20+2348字節(jié)=2368=0X940
那么程序剛開始運行的時候:MSP=0X2000 0000+0X940=0X2000 0940.
事實上,也是如此,如圖:



圖中,MSP就是:0X2000 0940.
程序運行后,MSP就是從這個地址開始,往下給函數(shù)的局部變量分配地址.

再說說棧的增長方向,我們可以用如下代碼測試:

//保存棧增長方向
//0,向下增長;1,向上增長.
static u8 stack_dir;

//查找棧增長方向,結(jié)果保存在stack_dir里面.
void find_stack_direction(void)
{
static u8 *addr=NULL;//用于存放第一個dummy的地址。
u8 dummy; //用于獲取棧地址
if(addr==NULL) //第一次進入
{
addr=&dummy; //保存dummy的地址
find_stack_direction (); //遞歸
}else //第二次進入
{
if(&dummy>addr)stack_dir=1; //第二次dummy的地址大于第一次dummy,那么說明棧增長方向是向上的.
else stack_dir=0; //第二次dummy的地址小于第一次dummy,那么說明棧增長方向是向下的.
}
}

這個代碼不是我寫的,網(wǎng)上抄來的,思路很巧妙,利用遞歸,判斷兩次分配給dummy的地址,來比較棧是向下生長,還是向上生長.
如果你在STM32測試這個函數(shù),你會發(fā)現(xiàn),STM32的棧,是向下生長的.事實上,一般CPU的棧增長方向,都是向下的.

2,再來說說,堆(HEAP)的問題.

全局變量,靜態(tài)變量,以及內(nèi)存管理所用的內(nèi)存,都是屬于"堆"區(qū),英文名:"HEAP"
與棧區(qū)不同,堆區(qū),則從內(nèi)存區(qū)域的起始地址,開始分配給各個全局變量和靜態(tài)變量.
堆的生長方向,都是向上的.在程序里面,所有的內(nèi)存分為:堆+棧. 只是他們各自的起始地址和增長方向不同,他們沒有一個固定的界限,所以一旦堆棧沖突,系統(tǒng)就到了崩潰的時候了.
同樣,我們用附件里面的例程測試:



stack_dir的地址是0X20000004,也就是STM32的內(nèi)存起始端的地址.
這里本來應(yīng)該是從0X2000 0000開始分配的,但是,我仿真發(fā)現(xiàn)0X2000 0000總是存放:0X2000 0398,這個值,貌似是MSP,但是又不變化,還請高手幫忙解釋下.
其他的,全局變量,則依次遞增,地址肯定大于0X20000004,比如cpu_endian的地址就是0X20000005.
這就是STM32內(nèi)部堆的分配規(guī)則.

3,再說說,大小端的問題.
大端模式:低位字節(jié)存在高地址上,高位字節(jié)存在低地址上
小端模式:高位字節(jié)存在高地址上,低位字節(jié)存在低地址上

STM32屬于小端模式,簡單的說,比如u32 temp=0X12345678;
假設(shè)temp地址在0X2000 0010.
那么在內(nèi)存里面,存放就變成了:
地址 " HEX|
0X2000 0010|78 56 43 12 |

CPU到底是大端還是小端,可以通過如下代碼測試:
//CPU大小端
//0,小端模式;1,大端模式.
static u8 cpu_endian;

//獲取CPU大小端模式,結(jié)果保存在cpu_endian里面
void find_cpu_endian(void)
{
int x=1;
if(*(char*)&x==1)cpu_endian=0;//小端模式
else cpu_endian=1;//大端模式
}
以上測試,在STM32上,你會得到cpu_endian=0,也就是小端模式.


3,最后說說,STM32內(nèi)存的問題.
還是以附件工程為例,在前面第一個圖,程序總共占用內(nèi)存:20+2348字節(jié),這么多內(nèi)存,到底是怎么得來的呢?
我們可以雙擊Project側(cè)邊欄的:Targt1,會彈出test.map,在這個里面,我們就可以清楚的知道這些內(nèi)存到底是怎么來的了.在這個test.map最后,Image 部分有:
==============================================================================

Image component sizes


Code (inc. data) RO Data RW Data ZI Data Debug Object Name

172 10 0 4 0 995 delay.o//delay.c里面,fac_us和fac_ms,共占用4字節(jié)
112 12 0 0 0 427 led.o
72 26 304 0 2048 828 startup_stm32f10x_hd.o //啟動文件,里面定義了Stack_Size為0X800,所以這里是2048.
712 52 0 0 0 2715 sys.o
348 154 0 6 0 208720 test.o//test.c里面,stack_dir和cpu_endian以及*addr,占用6字節(jié).
384 24 0 8 200 3050 usart.o//usart.c定義了一個串口接收數(shù)組buffer,占用200字節(jié).

----------------------------------------------------------------------
1800 278 336 20 2248 216735 Object Totals //總共2248+20字節(jié)
0 0 32 0 0 0 (incl. Generated)
0 0 0 2 0 0 (incl. Padding)//2字節(jié)用于對其

----------------------------------------------------------------------

Code (inc. data) RO Data RW Data ZI Data Debug Library Member Name

8 0 0 0 0 68 __main.o
104 0 0 0 0 84 __printf.o
52 8 0 0 0 0 __scatter.o
26 0 0 0 0 0 __scatter_copy.o
28 0 0 0 0 0 __scatter_zi.o
48 6 0 0 0 96 _printf_char_common.o
36 4 0 0 0 80 _printf_char_file.o
92 4 40 0 0 88 _printf_hex_int.o
184 0 0 0 0 88 _printf_intcommon.o
0 0 0 0 0 0 _printf_percent.o
4 0 0 0 0 0 _printf_percent_end.o
6 0 0 0 0 0 _printf_x.o
12 0 0 0 0 72 exit.o
8 0 0 0 0 68 ferror.o
6 0 0 0 0 152 heapauxi.o
2 0 0 0 0 0 libinit.o
2 0 0 0 0 0 libinit2.o
2 0 0 0 0 0 libshutdown.o
2 0 0 0 0 0 libshutdown2.o
8 4 0 0 96 68 libspace.o //庫文件(printf使用),占用了96字節(jié)
24 4 0 0 0 84 noretval__2printf.o
0 0 0 0 0 0 rtentry.o
12 0 0 0 0 0 rtentry2.o
6 0 0 0 0 0 rtentry4.o
2 0 0 0 0 0 rtexit.o
10 0 0 0 0 0 rtexit2.o
74 0 0 0 0 80 sys_stackheap_outer.o
2 0 0 0 0 68 use_no_semi.o
2 0 0 0 0 68 use_no_semi_2.o
450 8 0 0 0 236 faddsub_clz.o
388 76 0 0 0 96 fdiv.o
62 4 0 0 0 84 ffixu.o
38 0 0 0 0 68 fflt_clz.o
258 4 0 0 0 84 fmul.o
140 4 0 0 0 84 fnaninf.o
10 0 0 0 0 68 fretinf.o
0 0 0 0 0 0 usenofp.o

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

在嵌入式開發(fā)中,STM32的時鐘系統(tǒng)因其靈活性和復(fù)雜性成為開發(fā)者關(guān)注的焦點。然而,看似簡單的時鐘配置背后,隱藏著諸多易被忽視的陷阱,輕則導(dǎo)致系統(tǒng)不穩(wěn)定,重則引發(fā)硬件損壞。本文從時鐘源選擇、PLL配置、總線時鐘分配等關(guān)鍵環(huán)...

關(guān)鍵字: STM32 時鐘系統(tǒng)

在嵌入式系統(tǒng)開發(fā)中,STM32系列微控制器的內(nèi)部溫度傳感器因其低成本、高集成度特性,廣泛應(yīng)用于設(shè)備自檢、環(huán)境監(jiān)測等場景。然而,受芯片工藝差異和電源噪聲影響,其原始數(shù)據(jù)存在±1.5℃的固有誤差。本文從硬件配置、校準算法、軟...

關(guān)鍵字: STM32 溫度傳感器

在能源效率與智能化需求雙重驅(qū)動下,AC-DC轉(zhuǎn)換器的數(shù)字控制技術(shù)正經(jīng)歷從傳統(tǒng)模擬方案向全數(shù)字架構(gòu)的深刻變革?;赟TM32微控制器的PFM(脈沖頻率調(diào)制)+PWM(脈沖寬度調(diào)制)混合調(diào)制策略,結(jié)合動態(tài)電壓調(diào)整(Dynam...

關(guān)鍵字: AC-DC STM32

當前智能家居產(chǎn)品需求不斷增長 ,在這一背景下 ,對現(xiàn)有澆花裝置缺陷進行了改進 ,設(shè)計出基于STM32單片機的全 自動家用澆花機器人。該設(shè)計主要由機械結(jié)構(gòu)和控制系統(tǒng)構(gòu)成 ,機械結(jié)構(gòu)通過麥克納姆輪底盤與噴灑裝置的結(jié)合實現(xiàn)機器...

關(guān)鍵字: STM32 麥克納姆輪 安全可靠 通過性強

用c++編程似乎是讓你的Arduino項目起步的障礙嗎?您想要一種更直觀的微控制器編程方式嗎?那你需要了解一下Visuino!這個圖形化編程平臺將復(fù)雜電子項目的創(chuàng)建變成了拖動和連接塊的簡單任務(wù)。在本文中,我們將帶您完成使...

關(guān)鍵字: Visuino Arduino ESP32 STM32

基于STM32與LoRa技術(shù)的無線傳感網(wǎng)絡(luò)憑借其低功耗、廣覆蓋、抗干擾等特性,成為環(huán)境監(jiān)測、工業(yè)自動化等場景的核心解決方案。然而,如何在復(fù)雜電磁環(huán)境中實現(xiàn)高效休眠調(diào)度與動態(tài)信道優(yōu)化,成為提升網(wǎng)絡(luò)能效與可靠性的關(guān)鍵挑戰(zhàn)。本...

關(guān)鍵字: STM32 LoRa

在實時控制系統(tǒng)、高速通信協(xié)議處理及高精度數(shù)據(jù)采集等對時間敏感的應(yīng)用場景中,中斷響應(yīng)延遲的優(yōu)化直接決定了系統(tǒng)的可靠性與性能上限。STM32系列微控制器憑借其靈活的嵌套向量中斷控制器(NVIC)、多通道直接內(nèi)存訪問(DMA)...

關(guān)鍵字: STM32 DMA

數(shù)字電源技術(shù)向高功率密度、高效率與高動態(tài)響應(yīng)方向加速演進,STM32微控制器憑借其基于DSP庫的算法加速能力與對LLC諧振變換器的精準控制架構(gòu),成為優(yōu)化電源動態(tài)性能的核心平臺。相較于傳統(tǒng)模擬控制或通用型數(shù)字控制器,STM...

關(guān)鍵字: STM32 數(shù)字電源

STM32微控制器憑借其針對電機控制場景的深度優(yōu)化,成為高精度、高可靠性驅(qū)動系統(tǒng)的核心選擇。相較于通用型MCU,STM32在電機控制領(lǐng)域的核心優(yōu)勢集中體現(xiàn)在FOC(磁場定向控制)算法的硬件加速引擎與PWM死區(qū)時間的動態(tài)補...

關(guān)鍵字: STM32 電機控制

無線充電技術(shù)加速滲透消費電子與汽車電子領(lǐng)域,基于Qi協(xié)議的無線充電發(fā)射端開發(fā)成為智能設(shè)備能量補給的核心課題。傳統(tǒng)模擬控制方案存在響應(yīng)滯后、參數(shù)調(diào)整困難等問題,而基于STM32的數(shù)字PID控制結(jié)合FOD(Foreign O...

關(guān)鍵字: STM32 無線充電
關(guān)閉