日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁(yè) > 單片機(jī) > 單片機(jī)
[導(dǎo)讀]這里涉及到一個(gè)很重要的寄存器,時(shí)鐘配置寄存器:RCC_CFGR1 #if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)2 /* #define SYSCLK_FREQ_HSE HSE_VALUE */3 #define SYSCL

這里涉及到一個(gè)很重要的寄存器,時(shí)鐘配置寄存器:RCC_CFGR



1 #if defined (STM32F10X_LD_VL) || (defined STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)

2 /* #define SYSCLK_FREQ_HSE HSE_VALUE */

3 #define SYSCLK_FREQ_24MHz 24000000

4 #else

5 /* #define SYSCLK_FREQ_HSE HSE_VALUE */

6 /* #define SYSCLK_FREQ_24MHz 24000000 */

7 /* #define SYSCLK_FREQ_36MHz 36000000 */

8 /* #define SYSCLK_FREQ_48MHz 48000000 */

9 /* #define SYSCLK_FREQ_56MHz 56000000 */

10 #define SYSCLK_FREQ_72MHz 72000000

11 #endif


1 /**

2 * @brief Setup the microcontroller system

3 * Initialize the Embedded Flash Interface, the PLL and update the

4 * SystemCoreClock variable.

5 * @note This function should be used only after reset.

6 * @param None

7 * @retval None

8 */

9 void SystemInit (void)

10 {

11 /* Reset the RCC clock configuration to the default reset state(for debug purpose) */

12 /* Set HSION bit */

13 RCC->CR |= (uint32_t)0x00000001;

14

15 /* Reset SW, HPRE, PPRE1, PPRE2, ADCPRE and MCO bits */

16 #ifndef STM32F10X_CL

17 RCC->CFGR &= (uint32_t)0xF8FF0000;

18 #else

19 RCC->CFGR &= (uint32_t)0xF0FF0000;

20 #endif /* STM32F10X_CL */

21

22 /* Reset HSEON, CSSON and PLLON bits */

23 RCC->CR &= (uint32_t)0xFEF6FFFF;

24

25 /* Reset HSEBYP bit */

26 RCC->CR &= (uint32_t)0xFFFBFFFF;

27

28 /* Reset PLLSRC, PLLXTPRE, PLLMUL and USBPRE/OTGFSPRE bits */

29 RCC->CFGR &= (uint32_t)0xFF80FFFF;

30

31 #ifdef STM32F10X_CL

32 /* Reset PLL2ON and PLL3ON bits */

33 RCC->CR &= (uint32_t)0xEBFFFFFF;

34

35 /* Disable all interrupts and clear pending bits */

36 RCC->CIR = 0x00FF0000;

37

38 /* Reset CFGR2 register */

39 RCC->CFGR2 = 0x00000000;

40 #elif defined (STM32F10X_LD_VL) || defined (STM32F10X_MD_VL) || (defined STM32F10X_HD_VL)

41 /* Disable all interrupts and clear pending bits */

42 RCC->CIR = 0x009F0000;

43

44 /* Reset CFGR2 register */

45 RCC->CFGR2 = 0x00000000;

46 #else

47 /* Disable all interrupts and clear pending bits */

48 RCC->CIR = 0x009F0000;

49 #endif /* STM32F10X_CL */

50

51 #if defined (STM32F10X_HD) || (defined STM32F10X_XL) || (defined STM32F10X_HD_VL)

52 #ifdef DATA_IN_ExtSRAM

53 SystemInit_ExtMemCtl();

54 #endif /* DATA_IN_ExtSRAM */

55 #endif

56

57 /* Configure the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers */

58 /* Configure the Flash Latency cycles and enable prefetch buffer */

59 SetSysClock();

60

61 #ifdef VECT_TAB_SRAM

62 SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM. */

63 #else

64 SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH. */

65 #endif

66 }



/**

* @brief Configures the System clock frequency, HCLK, PCLK2 and PCLK1 prescalers.

* @param None

* @retval None

*/

static void SetSysClock(void)

{

#ifdef SYSCLK_FREQ_HSE

SetSysClockToHSE();

#elif defined SYSCLK_FREQ_24MHz

SetSysClockTo24();

#elif defined SYSCLK_FREQ_36MHz

SetSysClockTo36();

#elif defined SYSCLK_FREQ_48MHz

SetSysClockTo48();

#elif defined SYSCLK_FREQ_56MHz

SetSysClockTo56();

#elif defined SYSCLK_FREQ_72MHz

SetSysClockTo72();

#endif


設(shè)置RCC_CFGR寄存器的位參數(shù),使其與外部晶振匹配得到72M系統(tǒng)時(shí)鐘。



1 /**

2 * @brief Sets System clock frequency to 72MHz and configure HCLK, PCLK2

3 * and PCLK1 prescalers.

4 * @note This function should be used only after reset.

5 * @param None

6 * @retval None

7 */

8 static void SetSysClockTo72(void)

9 {

10 __IO uint32_t StartUpCounter = 0, HSEStatus = 0;

11

12 /* SYSCLK, HCLK, PCLK2 and PCLK1 configuration ---------------------------*/

13 /* Enable HSE */

14 RCC->CR |= ((uint32_t)RCC_CR_HSEON);

15

16 /* Wait till HSE is ready and if Time out is reached exit */

17 do

18 {

19 HSEStatus = RCC->CR & RCC_CR_HSERDY;

20 StartUpCounter++;

21 } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

22

23 if ((RCC->CR & RCC_CR_HSERDY) != RESET)

24 {

25 HSEStatus = (uint32_t)0x01;

26 }

27 else

28 {

29 HSEStatus = (uint32_t)0x00;

30 }

31

32 if (HSEStatus == (uint32_t)0x01)

33 {

34 /* Enable Prefetch Buffer */

35 FLASH->ACR |= FLASH_ACR_PRFTBE;

36

37 /* Flash 2 wait state */

38 FLASH->ACR &= (uint32_t)((uint32_t)~FLASH_ACR_LATENCY);

39 FLASH->ACR |= (uint32_t)FLASH_ACR_LATENCY_2;

40

41

42 /* HCLK = SYSCLK */

43 RCC->CFGR |= (uint32_t)RCC_CFGR_HPRE_DIV1;//AHB一分頻

44

45 /* PCLK2 = HCLK */

46 RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE2_DIV1;

47

48 /* PCLK1 = HCLK */

49 RCC->CFGR |= (uint32_t)RCC_CFGR_PPRE1_DIV2;

50

51 #ifdef STM32F10X_CL

52 /* Configure PLLs ------------------------------------------------------*/

53 /* PLL2 configuration: PLL2CLK = (HSE / 5) * 8 = 40 MHz */

54 /* PREDIV1 configuration: PREDIV1CLK = PLL2 / 5 = 8 MHz */

55

56 RCC->CFGR2 &= (uint32_t)~(RCC_CFGR2_PREDIV2 | RCC_CFGR2_PLL2MUL |

57 RCC_CFGR2_PREDIV1 | RCC_CFGR2_PREDIV1SRC);

58 RCC->CFGR2 |= (uint32_t)(RCC_CFGR2_PREDIV2_DIV5 | RCC_CFGR2_PLL2MUL8 |

59 RCC_CFGR2_PREDIV1SRC_PLL2 | RCC_CFGR2_PREDIV1_DIV5);

60

61 /* Enable PLL2 */

62 RCC->CR |= RCC_CR_PLL2ON;

63 /* Wait till PLL2 is ready */

64 while((RCC->CR & RCC_CR_PLL2RDY) == 0)

65 {

66 }

67

68

69 /* PLL configuration: PLLCLK = PREDIV1 * 9 = 72 MHz */

70 RCC->CFGR &= (uint32_t)~(RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLSRC | RCC_CFGR_PLLMULL);

71 RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLXTPRE_PREDIV1 | RCC_CFGR_PLLSRC_PREDIV1 |

72 RCC_CFGR_PLLMULL9);

73 #else

74 /* PLL configuration: PLLCLK = HSE * 9 = 72 MHz */

75 RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE |

76 RCC_CFGR_PLLMULL));

77 RCC->CFGR |= (uint32_t)(RCC_CFGR_PLLSRC_HSE | RCC_CFGR_PLLMULL9);

78 #endif /* STM32F10X_CL */

79

80 /* Enable PLL */

81 RCC->CR |= RCC_CR_PLLON;

82

83 /* Wait till PLL is ready */

84 while((RCC->CR & RCC_CR_PLLRDY) == 0)

85 {

86 }

87

88 /* Select PLL as system clock source */

89 RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));

90 RCC->CFGR |= (uint32_t)RCC_CFGR_SW_PLL;

91

92 /* Wait till PLL is used as system clock source */

93 while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS) != (uint32_t)0x08)

94 {

95 }

96 }

97 else

98 { /* If HSE fails to start-up, the application will have wrong clock

99 configuration. User can add here some code to deal with this error */

100 }

101 }


本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

在嵌入式開(kāi)發(fā)中,STM32的時(shí)鐘系統(tǒng)因其靈活性和復(fù)雜性成為開(kāi)發(fā)者關(guān)注的焦點(diǎn)。然而,看似簡(jiǎn)單的時(shí)鐘配置背后,隱藏著諸多易被忽視的陷阱,輕則導(dǎo)致系統(tǒng)不穩(wěn)定,重則引發(fā)硬件損壞。本文從時(shí)鐘源選擇、PLL配置、總線時(shí)鐘分配等關(guān)鍵環(huán)...

關(guān)鍵字: STM32 時(shí)鐘系統(tǒng)

在嵌入式系統(tǒng)開(kāi)發(fā)中,STM32系列微控制器的內(nèi)部溫度傳感器因其低成本、高集成度特性,廣泛應(yīng)用于設(shè)備自檢、環(huán)境監(jiān)測(cè)等場(chǎng)景。然而,受芯片工藝差異和電源噪聲影響,其原始數(shù)據(jù)存在±1.5℃的固有誤差。本文從硬件配置、校準(zhǔn)算法、軟...

關(guān)鍵字: STM32 溫度傳感器

在能源效率與智能化需求雙重驅(qū)動(dòng)下,AC-DC轉(zhuǎn)換器的數(shù)字控制技術(shù)正經(jīng)歷從傳統(tǒng)模擬方案向全數(shù)字架構(gòu)的深刻變革。基于STM32微控制器的PFM(脈沖頻率調(diào)制)+PWM(脈沖寬度調(diào)制)混合調(diào)制策略,結(jié)合動(dòng)態(tài)電壓調(diào)整(Dynam...

關(guān)鍵字: AC-DC STM32

當(dāng)前智能家居產(chǎn)品需求不斷增長(zhǎng) ,在這一背景下 ,對(duì)現(xiàn)有澆花裝置缺陷進(jìn)行了改進(jìn) ,設(shè)計(jì)出基于STM32單片機(jī)的全 自動(dòng)家用澆花機(jī)器人。該設(shè)計(jì)主要由機(jī)械結(jié)構(gòu)和控制系統(tǒng)構(gòu)成 ,機(jī)械結(jié)構(gòu)通過(guò)麥克納姆輪底盤與噴灑裝置的結(jié)合實(shí)現(xiàn)機(jī)器...

關(guān)鍵字: STM32 麥克納姆輪 安全可靠 通過(guò)性強(qiáng)

用c++編程似乎是讓你的Arduino項(xiàng)目起步的障礙嗎?您想要一種更直觀的微控制器編程方式嗎?那你需要了解一下Visuino!這個(gè)圖形化編程平臺(tái)將復(fù)雜電子項(xiàng)目的創(chuàng)建變成了拖動(dòng)和連接塊的簡(jiǎn)單任務(wù)。在本文中,我們將帶您完成使...

關(guān)鍵字: Visuino Arduino ESP32 STM32

上海2025年7月21日 /美通社/ -- 本文圍繞跨域時(shí)間同步技術(shù)展開(kāi),作為智能汽車 "感知-決策-執(zhí)行 -交互" 全鏈路的時(shí)間基準(zhǔn),文章介紹了 PTP、gPTP、CAN 等主流同步技術(shù)及特點(diǎn),并以...

關(guān)鍵字: 時(shí)鐘 時(shí)間同步 同步技術(shù) 智能汽車

基于STM32與LoRa技術(shù)的無(wú)線傳感網(wǎng)絡(luò)憑借其低功耗、廣覆蓋、抗干擾等特性,成為環(huán)境監(jiān)測(cè)、工業(yè)自動(dòng)化等場(chǎng)景的核心解決方案。然而,如何在復(fù)雜電磁環(huán)境中實(shí)現(xiàn)高效休眠調(diào)度與動(dòng)態(tài)信道優(yōu)化,成為提升網(wǎng)絡(luò)能效與可靠性的關(guān)鍵挑戰(zhàn)。本...

關(guān)鍵字: STM32 LoRa

在實(shí)時(shí)控制系統(tǒng)、高速通信協(xié)議處理及高精度數(shù)據(jù)采集等對(duì)時(shí)間敏感的應(yīng)用場(chǎng)景中,中斷響應(yīng)延遲的優(yōu)化直接決定了系統(tǒng)的可靠性與性能上限。STM32系列微控制器憑借其靈活的嵌套向量中斷控制器(NVIC)、多通道直接內(nèi)存訪問(wèn)(DMA)...

關(guān)鍵字: STM32 DMA

數(shù)字電源技術(shù)向高功率密度、高效率與高動(dòng)態(tài)響應(yīng)方向加速演進(jìn),STM32微控制器憑借其基于DSP庫(kù)的算法加速能力與對(duì)LLC諧振變換器的精準(zhǔn)控制架構(gòu),成為優(yōu)化電源動(dòng)態(tài)性能的核心平臺(tái)。相較于傳統(tǒng)模擬控制或通用型數(shù)字控制器,STM...

關(guān)鍵字: STM32 數(shù)字電源

STM32微控制器憑借其針對(duì)電機(jī)控制場(chǎng)景的深度優(yōu)化,成為高精度、高可靠性驅(qū)動(dòng)系統(tǒng)的核心選擇。相較于通用型MCU,STM32在電機(jī)控制領(lǐng)域的核心優(yōu)勢(shì)集中體現(xiàn)在FOC(磁場(chǎng)定向控制)算法的硬件加速引擎與PWM死區(qū)時(shí)間的動(dòng)態(tài)補(bǔ)...

關(guān)鍵字: STM32 電機(jī)控制
關(guān)閉