日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁(yè) > 單片機(jī) > 單片機(jī)
[導(dǎo)讀]看了幾篇博客之后,對(duì)這個(gè)定時(shí)器也有了一些認(rèn)識(shí),其實(shí)和51差不多,就是配置定時(shí)器的時(shí)候多了幾個(gè)步驟而已。其中很好的一片是:http://blog.sina.com.cn/s/blog_49cb42490100s6ud.htmlSTM32中一共有11個(gè)定時(shí)器,其中2

看了幾篇博客之后,對(duì)這個(gè)定時(shí)器也有了一些認(rèn)識(shí),其實(shí)和51差不多,就是配置定時(shí)器的時(shí)候多了幾個(gè)步驟而已。


其中很好的一片是:http://blog.sina.com.cn/s/blog_49cb42490100s6ud.html

STM32中一共有11個(gè)定時(shí)器,其中2個(gè)高級(jí)控制定時(shí)器,4個(gè)普通定時(shí)器和2個(gè)基本定時(shí)器,以及2個(gè)看門狗定時(shí)器和1個(gè)系統(tǒng)嘀嗒定時(shí)器。其中系統(tǒng)嘀嗒定時(shí)器是前文中所描述的SysTick,

其中TIM1和TIM8是能夠產(chǎn)生3對(duì)PWM互補(bǔ)輸出的高級(jí)登時(shí)其,常用于三相電機(jī)的驅(qū)動(dòng),時(shí)鐘由APB2的輸出產(chǎn)生。TIM2-TIM5是普通定時(shí)器,TIM6和TIM7是基本定時(shí)器,其時(shí)鐘由APB1輸出產(chǎn)生。

由于STM32的TIMER功能太復(fù)雜了,所以只能一點(diǎn)一點(diǎn)的學(xué)習(xí)。因此今天就從最簡(jiǎn)單的開始學(xué)習(xí)起,也就是TIM2-TIM5普通定時(shí)器的定時(shí)功能。

2.3編程步驟

1.配置系統(tǒng)時(shí)鐘;

2.配置NVIC;

3.配置GPIO;

4.配置TIMER;

其中,前3項(xiàng)很簡(jiǎn)單,在此就不再贅述了。第4項(xiàng)配置TIMER有如下配置:

(1)利用TIM_DeInit()函數(shù)將Timer設(shè)置為默認(rèn)缺省值;

(2)TIM_InternalClockConfig()選擇TIMx來設(shè)置內(nèi)部時(shí)鐘源; //可省略

(3)TIM_Perscaler來設(shè)置預(yù)分頻系數(shù);

(4)TIM_ClockDivision來設(shè)置時(shí)鐘分割;

(5)TIM_CounterMode來設(shè)置計(jì)數(shù)器模式;

(6)TIM_Period來設(shè)置自動(dòng)裝入的值

(7)TIM_ARRPerloadConfig()來設(shè)置是否使用預(yù)裝載緩沖器 //可省略

(8)TIM_ITConfig()來開啟TIMx的中斷

其中(3)-(6)步驟中的參數(shù)由TIM_TimerBaseInitTypeDef結(jié)構(gòu)體給出。步驟(3)中的預(yù)分頻系數(shù)用來確定TIMx所使用的時(shí)鐘頻率,具體計(jì)算方法為:CK_INT/(TIM_Perscaler+1)。CK_INT是內(nèi)部時(shí)鐘源的頻率,是根據(jù)2.1中所描述的APB1的倍頻器送出的時(shí)鐘,TIM_Perscaler是用戶設(shè)定的預(yù)分頻系數(shù),其值范圍是從0 – 65535。

步驟(7)中需要禁止使用預(yù)裝載緩沖器。當(dāng)預(yù)裝載緩沖器被禁止時(shí),寫入自動(dòng)裝入的值(TIMx_ARR)的數(shù)值會(huì)直接傳送到對(duì)應(yīng)的影子寄存器;如果使能預(yù)加載寄存器,則寫入ARR的數(shù)值會(huì)在更新事件時(shí),才會(huì)從預(yù)加載寄存器傳送到對(duì)應(yīng)的影子寄存器。

下面是我改了的一個(gè)歷程,適合我的板子。

/***********************************************************

本例實(shí)現(xiàn)的是通過TIM2的定時(shí)功能,使得LED燈按照1s的時(shí)間間隔來閃爍,D5燈,D13端口
STM32中一共有11個(gè)定時(shí)器,其中2個(gè)高級(jí)控制定時(shí)器,4個(gè)普通定時(shí)器和2個(gè)基本定時(shí)器,
以及2個(gè)看門狗定時(shí)器和1個(gè)系統(tǒng)嘀嗒定時(shí)器。其中系統(tǒng)嘀嗒定時(shí)器是前文中所描述的SysTick,
其中TIM1和TIM8是能夠產(chǎn)生3對(duì)PWM互補(bǔ)輸出的高級(jí)登時(shí)其,常用于三相電機(jī)的驅(qū)動(dòng),時(shí)鐘由APB2的輸出產(chǎn)生。
TIM2-TIM5是普通定時(shí)器,TIM6和TIM7是基本定時(shí)器,其時(shí)鐘由APB1輸出產(chǎn)生。

日期 :2016年2.23

****************************************************************/


#include "stm32f10x.h"

//void RCC_cfg(); 原程序中是配置系統(tǒng)時(shí)鐘,但是這個(gè)版本不需要,下面直接systeminit()
void TIMER_cfg(void); //定時(shí)器函數(shù)
void NVIC_cfg(void); //中斷配置函數(shù)
void GPIO_cfg(void); //LED配置


int main()
{
// RCC_cfg();
//SystemInit();
GPIO_cfg();
NVIC_cfg();

TIMER_cfg();

//開啟定時(shí)器2
// TIM_Cmd(TIM2,ENABLE);

while(1);
}

/*
void RCC_cfg()
{

//定義錯(cuò)誤狀態(tài)變量
ErrorStatus HSEStartUpStatus;

//將RCC寄存器重新設(shè)置為默認(rèn)值
RCC_DeInit();

//打開外部高速時(shí)鐘晶振
RCC_HSEConfig(RCC_HSE_ON);

//等待外部高速時(shí)鐘晶振工作
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if(HSEStartUpStatus == SUCCESS)
{
//設(shè)置AHB時(shí)鐘(HCLK)為系統(tǒng)時(shí)鐘
RCC_HCLKConfig(RCC_SYSCLK_Div1);

//設(shè)置高速AHB時(shí)鐘(APB2)為HCLK時(shí)鐘
RCC_PCLK2Config(RCC_HCLK_Div1);

//設(shè)置低速AHB時(shí)鐘(APB1)為HCLK的2分頻
RCC_PCLK1Config(RCC_HCLK_Div2);

//設(shè)置FLASH代碼延時(shí)
FLASH_SetLatency(FLASH_Latency_2);

//使能預(yù)取指緩存
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

//設(shè)置PLL時(shí)鐘,為HSE的9倍頻 8MHz * 9 = 72MHz
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

//使能PLL
RCC_PLLCmd(ENABLE);

//等待PLL準(zhǔn)備就緒
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);

//設(shè)置PLL為系統(tǒng)時(shí)鐘源
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

//判斷PLL是否是系統(tǒng)時(shí)鐘
while(RCC_GetSYSCLKSource() != 0x08);
}

//允許TIM2的時(shí)鐘
// RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE);
//允許GPIO的時(shí)鐘
//RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);


}*/

void TIMER_cfg()
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; //定義timer結(jié)構(gòu)體變量

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE); //TIM 2-7在總線1上面

//重新將Timer設(shè)置為缺省值。。
TIM_DeInit(TIM2);

//采用內(nèi)部時(shí)鐘給TIM2提供時(shí)鐘源,
// TIM_InternalClockConfig(TIM2); //源程序 有這個(gè),但是去掉 也無妨

//預(yù)分頻系數(shù)為36000-1,這樣計(jì)數(shù)器時(shí)鐘為72MHz/36000 = 2kHz
TIM_TimeBaseStructure.TIM_Prescaler = 36000 - 1;
//設(shè)置時(shí)鐘分割
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
//設(shè)置計(jì)數(shù)器模式為向上計(jì)數(shù)模式
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
//設(shè)置計(jì)數(shù)溢出大小,每計(jì)2000個(gè)數(shù)就產(chǎn)生一個(gè)更新事件
TIM_TimeBaseStructure.TIM_Period = 2000 - 1;
//將配置應(yīng)用到TIM2中
TIM_TimeBaseInit(TIM2,&TIM_TimeBaseStructure);

//清除溢出中斷標(biāo)志
TIM_ClearFlag(TIM2, TIM_FLAG_Update);
//禁止ARR預(yù)裝載緩沖器
// TIM_ARRPreloadConfig(TIM2, DISABLE);
//開啟TIM2的中斷
TIM_ITConfig(TIM2,TIM_IT_Update,ENABLE);

TIM_Cmd(TIM2,ENABLE);
}


void NVIC_cfg()
{
NVIC_InitTypeDef NVIC_InitStructure;
//選擇中斷分組1
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);


//選擇TIM2的中斷通道
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
//搶占式中斷優(yōu)先級(jí)設(shè)置為0
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
//響應(yīng)式中斷優(yōu)先級(jí)設(shè)置為0
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
//使能中斷
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure); //初始化
}

void GPIO_cfg()
{
GPIO_InitTypeDef GPIO_InitStructure;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD,ENABLE);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; //選擇引腳5
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //輸出頻率最大50MHz
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; //帶上拉電阻輸出
GPIO_Init(GPIOD,&GPIO_InitStructure);

}

//在stm32f10x_it.c中,我們找到函數(shù)TIM2_IRQHandler(),并向其中添加代碼,如果沒有這個(gè)文件,在主函數(shù)里直接寫也可以

void TIM2_IRQHandler(void)
{
u8 ReadValue;
//檢測(cè)是否發(fā)生溢出更新事件
if(TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)
{
//清除TIM2的中斷待處理位
TIM_ClearITPendingBit(TIM2 , TIM_FLAG_Update);
//將PB.5管腳輸出數(shù)值寫入ReadValue
ReadValue = GPIO_ReadOutputDataBit(GPIOD,GPIO_Pin_13);

if(ReadValue == 0)
{
GPIO_SetBits(GPIOD,GPIO_Pin_13);
}
else
{
GPIO_ResetBits(GPIOD,GPIO_Pin_13);
}
}

}


本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

在嵌入式開發(fā)中,STM32的時(shí)鐘系統(tǒng)因其靈活性和復(fù)雜性成為開發(fā)者關(guān)注的焦點(diǎn)。然而,看似簡(jiǎn)單的時(shí)鐘配置背后,隱藏著諸多易被忽視的陷阱,輕則導(dǎo)致系統(tǒng)不穩(wěn)定,重則引發(fā)硬件損壞。本文從時(shí)鐘源選擇、PLL配置、總線時(shí)鐘分配等關(guān)鍵環(huán)...

關(guān)鍵字: STM32 時(shí)鐘系統(tǒng)

在嵌入式系統(tǒng)開發(fā)中,STM32系列微控制器的內(nèi)部溫度傳感器因其低成本、高集成度特性,廣泛應(yīng)用于設(shè)備自檢、環(huán)境監(jiān)測(cè)等場(chǎng)景。然而,受芯片工藝差異和電源噪聲影響,其原始數(shù)據(jù)存在±1.5℃的固有誤差。本文從硬件配置、校準(zhǔn)算法、軟...

關(guān)鍵字: STM32 溫度傳感器

在能源效率與智能化需求雙重驅(qū)動(dòng)下,AC-DC轉(zhuǎn)換器的數(shù)字控制技術(shù)正經(jīng)歷從傳統(tǒng)模擬方案向全數(shù)字架構(gòu)的深刻變革?;赟TM32微控制器的PFM(脈沖頻率調(diào)制)+PWM(脈沖寬度調(diào)制)混合調(diào)制策略,結(jié)合動(dòng)態(tài)電壓調(diào)整(Dynam...

關(guān)鍵字: AC-DC STM32

當(dāng)前智能家居產(chǎn)品需求不斷增長(zhǎng) ,在這一背景下 ,對(duì)現(xiàn)有澆花裝置缺陷進(jìn)行了改進(jìn) ,設(shè)計(jì)出基于STM32單片機(jī)的全 自動(dòng)家用澆花機(jī)器人。該設(shè)計(jì)主要由機(jī)械結(jié)構(gòu)和控制系統(tǒng)構(gòu)成 ,機(jī)械結(jié)構(gòu)通過麥克納姆輪底盤與噴灑裝置的結(jié)合實(shí)現(xiàn)機(jī)器...

關(guān)鍵字: STM32 麥克納姆輪 安全可靠 通過性強(qiáng)

用c++編程似乎是讓你的Arduino項(xiàng)目起步的障礙嗎?您想要一種更直觀的微控制器編程方式嗎?那你需要了解一下Visuino!這個(gè)圖形化編程平臺(tái)將復(fù)雜電子項(xiàng)目的創(chuàng)建變成了拖動(dòng)和連接塊的簡(jiǎn)單任務(wù)。在本文中,我們將帶您完成使...

關(guān)鍵字: Visuino Arduino ESP32 STM32

基于STM32與LoRa技術(shù)的無線傳感網(wǎng)絡(luò)憑借其低功耗、廣覆蓋、抗干擾等特性,成為環(huán)境監(jiān)測(cè)、工業(yè)自動(dòng)化等場(chǎng)景的核心解決方案。然而,如何在復(fù)雜電磁環(huán)境中實(shí)現(xiàn)高效休眠調(diào)度與動(dòng)態(tài)信道優(yōu)化,成為提升網(wǎng)絡(luò)能效與可靠性的關(guān)鍵挑戰(zhàn)。本...

關(guān)鍵字: STM32 LoRa

在實(shí)時(shí)控制系統(tǒng)、高速通信協(xié)議處理及高精度數(shù)據(jù)采集等對(duì)時(shí)間敏感的應(yīng)用場(chǎng)景中,中斷響應(yīng)延遲的優(yōu)化直接決定了系統(tǒng)的可靠性與性能上限。STM32系列微控制器憑借其靈活的嵌套向量中斷控制器(NVIC)、多通道直接內(nèi)存訪問(DMA)...

關(guān)鍵字: STM32 DMA

數(shù)字電源技術(shù)向高功率密度、高效率與高動(dòng)態(tài)響應(yīng)方向加速演進(jìn),STM32微控制器憑借其基于DSP庫(kù)的算法加速能力與對(duì)LLC諧振變換器的精準(zhǔn)控制架構(gòu),成為優(yōu)化電源動(dòng)態(tài)性能的核心平臺(tái)。相較于傳統(tǒng)模擬控制或通用型數(shù)字控制器,STM...

關(guān)鍵字: STM32 數(shù)字電源

STM32微控制器憑借其針對(duì)電機(jī)控制場(chǎng)景的深度優(yōu)化,成為高精度、高可靠性驅(qū)動(dòng)系統(tǒng)的核心選擇。相較于通用型MCU,STM32在電機(jī)控制領(lǐng)域的核心優(yōu)勢(shì)集中體現(xiàn)在FOC(磁場(chǎng)定向控制)算法的硬件加速引擎與PWM死區(qū)時(shí)間的動(dòng)態(tài)補(bǔ)...

關(guān)鍵字: STM32 電機(jī)控制

無線充電技術(shù)加速滲透消費(fèi)電子與汽車電子領(lǐng)域,基于Qi協(xié)議的無線充電發(fā)射端開發(fā)成為智能設(shè)備能量補(bǔ)給的核心課題。傳統(tǒng)模擬控制方案存在響應(yīng)滯后、參數(shù)調(diào)整困難等問題,而基于STM32的數(shù)字PID控制結(jié)合FOD(Foreign O...

關(guān)鍵字: STM32 無線充電
關(guān)閉