(1)GPIO_Mode_AIN模擬輸入(2)GPIO_Mode_IN_FLOATING浮空輸入(3)GPIO_Mode_IPD下拉輸入(4)GPIO_Mode_IPU上拉輸入(5)GPIO_Mode_Out_OD開漏輸出(6)GPIO_Mode_Out_PP推挽輸出(7)GPIO_Mode_AF_OD復用開漏輸出(8)GPIO_Mode_AF_PP復用推挽輸出對于剛?cè)腴T的新手,我想這幾個概念是必須得搞清楚的,平時接觸的最多的也就是推挽輸出、開漏輸出、上拉輸入這三種,但一直未曾對這些做過歸納。因此,在這里做一個總結(jié):推挽輸出:可以輸出高,低電平,連接數(shù)字器件;推挽結(jié)構(gòu)一般是指兩個三極管分別受兩互補信號的控制,總是在一個三極管導通的時候另一個截止。高低電平由IC的電源低定。推挽電路是兩個參數(shù)相同的三極管或MOSFET,以推挽方式存在于電路中,各負責正負半周的波形放大任務,電路工作時,兩只對稱的功率開關管每次只有一個導通,所以導通損耗小、效率高。輸出既可以向負載灌電流,也可以從負載抽取電流。推拉式輸出級既提高電路的負載能力,又提高開關速度。詳細理解:推挽放大器的輸出級有兩個“臂”(兩組放大元件),一個“臂”的電流增加時,另一個“臂”的電流則減小,二者的狀態(tài)輪流轉(zhuǎn)換。對負載而言,好像是一個“臂”在推,一個“臂”在拉,共同完成電流輸出任務。當輸出高電平時,也就是下級負載門輸入高電平時,輸出端的電流將是下級門從本級電源經(jīng)VT3拉出。這樣一來,輸出高低電平時,VT3一路和VT5一路將交替工作,從而減低了功耗,提高了每個管的承受能力。又由于不論走哪一路,管子導通電阻都很小,使RC常數(shù)很小,轉(zhuǎn)變速度很快。因此,推拉式輸出級既提高電路的負載能力,又提高開關速度。開漏輸出:輸出端相當于三極管的集電極.要得到高電平狀態(tài)需要上拉電阻才行.適合于做電流型的驅(qū)動,其吸收電流的能力相對強(一般20ma以內(nèi)).開漏形式的電路有以下幾個特點:1.利用外部電路的驅(qū)動能力,減少IC內(nèi)部的驅(qū)動。當IC內(nèi)部MOSFET導通時,驅(qū)動電流是從外部的VCC流經(jīng)Rpull-up,MOSFET到GND。IC內(nèi)部僅需很下的柵極驅(qū)動電流。2.一般來說,開漏是用來連接不同電平的器件,匹配電平用的,因為開漏引腳不連接外部的上拉電阻時,只能輸出低電平,如果需要同時具備輸出高電平的功能,則需要接上拉電阻,很好的一個優(yōu)點是通過改變上拉電源的電壓,便可以改變傳輸電平。比如加上上拉電阻就可以提供TTL/CMOS電平輸出等。(上拉電阻的阻值決定了邏輯電平轉(zhuǎn)換的沿的速度。阻值越大,速度越低功耗越小,所以負載電阻的選擇要兼顧功耗和速度。)3.OPEN-DRAIN提供了靈活的輸出方式,但是也有其弱點,就是帶來上升沿的延時。因為上升沿是通過外接上拉無源電阻對負載充電,所以當電阻選擇小時延時就小,但功耗大;反之延時大功耗小。所以如果對延時有要求,則建議用下降沿輸出。4.可以將多個開漏輸出的Pin,連接到一條線上。通過一只上拉電阻,在不增加任何器件的情況下,形成“與邏輯”關系。這也是I2C,SMBus等總線判斷總線占用狀態(tài)的原理。補充:什么是“線與”?:在一個結(jié)點(線)上,連接一個上拉電阻到電源VCC或VDD和n個NPN或NMOS晶體管的集電極C或漏極D,這些晶體管的發(fā)射極E或源極S都接到地線上,只要有一個晶體管飽和,這個結(jié)點(線)就被拉到地線電平上.因為這些晶體管的基極注入電流(NPN)或柵極加上高電平(NMOS),晶體管就會飽和,所以這些基極或柵極對這個結(jié)點(線)的關系是或非NOR邏輯.如果這個結(jié)點后面加一個反相器,就是或OR邏輯.其實可以簡單的理解為:在所有引腳連在一起時,外接一上拉電阻,如果有一個引腳輸出為邏輯0,相當于接地,與之并聯(lián)的回路“相當于被一根導線短路”,所以外電路邏輯電平便為0,只有都為高電平時,與的結(jié)果才為邏輯1。關于推挽輸出和開漏輸出,最后用一幅最簡單的圖形來概括:該圖中左邊的便是推挽輸出模式,其中比較器輸出高電平時下面的PNP三極管截止,而上面NPN三極管導通,輸出電平VS+;當比較器輸出低電平時則恰恰相反,PNP三極管導通,輸出和地相連,為低電平。右邊的則可以理解為開漏輸出形式,需要接上拉。浮空輸入:對于浮空輸入,一直沒找到很權(quán)威的解釋,只好從以下圖中去理解了由于浮空輸入一般多用于外部按鍵輸入,結(jié)合圖上的輸入部分電路,我理解為浮空輸入狀態(tài)下,IO的電平狀態(tài)是不確定的,完全由外部輸入決定,如果在該引腳懸空的情況下,讀取該端口的電平是不確定的。上拉輸入/下拉輸入/模擬輸入:這幾個概念很好理解,從字面便能輕易讀懂。復用開漏輸出、復用推挽輸出:可以理解為GPIO口被用作第二功能時的配置情況(即并非作為通用IO口使用)最后總結(jié)下使用情況:在STM32中選用IO模式(1)浮空輸入_IN_FLOATING——浮空輸入,可以做KEY識別,RX1(2)帶上拉輸入_IPU——IO內(nèi)部上拉電阻輸入(3)帶下拉輸入_IPD——IO內(nèi)部下拉電阻輸入(4)模擬輸入_AIN——應用ADC模擬輸入,或者低功耗下省電(5)開漏輸出_OUT_OD——IO輸出0接GND,IO輸出1,懸空,需要外接上拉電阻,才能實現(xiàn)輸出高電平。當輸出為1時,IO口的狀態(tài)由上拉電阻拉高電平,但由于是開漏輸出模式,這樣IO口也就可以由外部電路改變?yōu)榈碗娖交虿蛔儭?梢宰xIO輸入電平變化,實現(xiàn)C51的IO雙向功能(6)推挽輸出_OUT_PP——IO輸出0-接GND,IO輸出1-接VCC,讀輸入值是未知的(7)復用功能的推挽輸出_AF_PP——片內(nèi)外設功能(I2C的SCL,SDA)(8)復用功能的開漏輸出_AF_OD——片內(nèi)外設功能(TX1,MOSI,MISO.SCK.SS)STM32設置實例:(1)模擬I2C使用開漏輸出_OUT_OD,接上拉電阻,能夠正確輸出0和1;讀值時先GPIO_SetBits(GPIOB,GPIO_Pin_0);拉高,然后可以讀IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);(2)如果是無上拉電阻,IO默認是高電平;需要讀取IO的值,可以使用帶上拉輸入_IPU和浮空輸入_IN_FLOATING和開漏輸出_OUT_OD;
一、GPIO配置(1)GPIO_Mode_AIN模擬輸入(2)GPIO_Mode_IN_FLOATING浮空輸入(3)GPIO_Mode_IPD下拉輸入(4)GPIO_Mode_IPU上拉輸入(5)GPIO_Mode_Out_OD開漏輸出(6)GPIO_Mode_Out_PP推挽輸出(7)GPIO_Mode_AF_OD復用開漏輸出(8)GPIO_Mode_AF_PP復用推挽輸出GPIO_Speed_10MHz最高輸出速率10MHzGPIO_Speed_2MHz最高輸出速率2MHzGPIO_Speed_50MHz最高輸出速率50MHz1.1I/O口的輸出模式下,有3種輸出速度可選(2MHz、10MHz和50MHz),這個速度是指I/O口驅(qū)動電路的響應速度而不是輸出信號的速度,輸出信號的速度與程序有關(芯片內(nèi)部在I/O口的輸出部分安排了多個響應速度不同的輸出驅(qū)動電路,用戶可以根據(jù)自己的需要選擇合適的驅(qū)動電路)。通過選擇速度來選擇不同的輸出驅(qū)動模塊,達到最佳的噪聲控制和降低功耗的目的。高頻的驅(qū)動電路,噪聲也高,當不需要高的輸出頻率時,請選用低頻驅(qū)動電路,這樣非常有利于提高系統(tǒng)的EMI性能。當然如果要輸出較高頻率的信號,但卻選用了較低頻率的驅(qū)動模塊,很可能會得到失真的輸出信號。關鍵是GPIO的引腳速度跟應用匹配(推薦10倍以上?)。比如:1.1.1對于串口,假如最大波特率只需115.2k,那么用2M的GPIO的引腳速度就夠了,既省電也噪聲小。1.1.2對于I2C接口,假如使用400k波特率,若想把余量留大些,那么用2M的GPIO的引腳速度或許不夠,這時可以選用10M的GPIO引腳速度。1.1.3對于SPI接口,假如使用18M或9M波特率,用10M的GPIO的引腳速度顯然不夠了,需要選用50M的GPIO的引腳速度。1.2GPIO口設為輸入時,輸出驅(qū)動電路與端口是斷開,所以輸出速度配置無意義。1.3在復位期間和剛復位后,復用功能未開啟,I/O端口被配置成浮空輸入模式。1.4所有端口都有外部中斷能力。為了使用外部中斷線,端口必須配置成輸入模式。1.5GPIO口的配置具有上鎖功能,當配置好GPIO口后,可以通過程序鎖住配置組合,直到下次芯片復位才能解鎖。2、推挽輸出與開漏輸出的區(qū)別推挽輸出:可以輸出高,低電平,連接數(shù)字器件;開漏輸出:輸出端相當于三極管的集電極.要得到高電平狀態(tài)需要上拉電阻才行.適合于做電流型的驅(qū)動,其吸收電流的能力相對強(一般20ma以內(nèi)).推挽結(jié)構(gòu)一般是指兩個三極管分別受兩互補信號的控制,總是在一個三極管導通的時候另一個截止.要實現(xiàn)線與需要用OC(opencollector)門電路.是兩個參數(shù)相同的三極管或MOSFET,以推挽方式存在于電路中,各負責正負半周的波形放大任務,電路工作時,兩只對稱的功率開關管每次只有一個導通,所以導通損耗小,效率高。輸出既可以向負載灌電流,也可以從負載抽取電流當端口配置為輸出時:開漏模式:輸出0時,N-MOS導通,P-MOS不被激活,輸出0。輸出1時,N-MOS高阻,P-MOS不被激活,輸出1(需要外部上拉電路);此模式可以把端口作為雙向IO使用。推挽模式:輸出0時,N-MOS導通,P-MOS高阻,輸出0。輸出1時,N-MOS高阻,P-MOS導通,輸出1(不需要外部上拉電路)。簡單來說開漏是0的時候接GND1的時候浮空推挽是0的時候接GND1的時候接VCC3、在STM32中選用IO模式(1)浮空輸入_IN_FLOATING——浮空輸入,可以做KEY識別,RX1(2)帶上拉輸入_IPU——IO內(nèi)部上拉電阻輸入(3)帶下拉輸入_IPD——IO內(nèi)部下拉電阻輸入(4)模擬輸入_AIN——應用ADC模擬輸入,或者低功耗下省電(5)開漏輸出_OUT_OD——IO輸出0接GND,IO輸出1,懸空,需要外接上拉電阻,才能實現(xiàn)輸出高電平。當輸出為1時,IO口的狀態(tài)由上拉電阻拉高電平,但由于是開漏輸出模式,這樣IO口也就可以由外部電路改變?yōu)榈碗娖交虿蛔???梢宰xIO輸入電平變化,實現(xiàn)C51的IO雙向功能(6)推挽輸出_OUT_PP——IO輸出0-接GND,IO輸出1-接VCC,讀輸入值是未知的(7)復用功能的推挽輸出_AF_PP——片內(nèi)外設功能(I2C的SCL,SDA)(8)復用功能的開漏輸出_AF_OD——片內(nèi)外設功能(TX1,MOSI,MISO.SCK.SS)實例總結(jié):(1)模擬I2C使用開漏輸出_OUT_OD,接上拉電阻,能夠正確輸出0和1;讀值時先GPIO_SetBits(GPIOB,GPIO_Pin_0);拉高,然后可以讀IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);(2)如果是無上拉電阻,IO默認是高電平;需要讀取IO的值,可以使用帶上拉輸入_IPU和浮空輸入_IN_FLOATING和開漏輸出_OUT_OD;4、IO低功耗:關于模擬輸入&低功耗,根據(jù)STM32的低功耗AN(AN2629)及其源文件,在STOP模式下,為了得到盡量低的功耗,確實把所有的IO(包括非A/D輸入的GPIO)都設置為模擬輸入5、程序(1)時鐘:RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB|RCC_APB2Periph_GPIOC,ENABLE);(2)IO配置:GPIO_InitStructure.GPIO_Pin=GPIO_Pin_8;//IR輸入GPIO_InitStructure.GPIO_Speed=GPIO_Speed_10MHz;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_OD;GPIO_Init(GPIOC,&GPIO_InitStructure);GPIO_InitStructure.GPIO_Pin=GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_15;GPIO_InitStructure.GPIO_Speed=GPIO_Speed_2MHz;GPIO_InitStructure.GPIO_Mode=GPIO_Mode_Out_PP;GPIO_Init(GPIOB,&GPIO_InitStructure);(3)輸出輸入:輸出0:GPIO_ResetBits(GPIOB,GPIO_Pin_0)輸出1:GPIO_SetBits(GPIOB,GPIO_Pin_0)輸入:GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_7)