日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > > 21ic電子網(wǎng)
[導(dǎo)讀]本文主要介紹了高斯濾波器的原理及其實(shí)現(xiàn)過程 高斯濾波器是一種線性濾波器,能夠有效的抑制噪聲,平滑圖像。其作用原理和均值濾波器類似,都是取濾波器窗口內(nèi)的像素的均值作為輸出。其窗口模板的系數(shù)和均值濾波器不同,均值濾波器的模板系數(shù)都是相同的為1;而



本文主要介紹了高斯濾波器的原理及其實(shí)現(xiàn)過程

高斯濾波器是一種線性濾波器,能夠有效的抑制噪聲,平滑圖像。其作用原理和均值濾波器類似,都是取濾波器窗口內(nèi)的像素的均值作為輸出。其窗口模板的系數(shù)和均值濾波器不同,均值濾波器的模板系數(shù)都是相同的為1;而高斯濾波器的模板系數(shù),則隨著距離模板中心的增大而系數(shù)減小。所以,高斯濾波器相比于均值濾波器對(duì)圖像個(gè)模糊程度較小。

什么是高斯濾波器

既然名稱為高斯濾波器,那么其和高斯分布(正態(tài)分布)是有一定的關(guān)系的。一個(gè)二維的高斯函數(shù)如下:


高斯濾波器的原理及其實(shí)現(xiàn)過程(附模板代碼)


其中(x,y)(x,y)為點(diǎn)坐標(biāo),在圖像處理中可認(rèn)為是整數(shù);σσ是標(biāo)準(zhǔn)差。要想得到一個(gè)高斯濾波器的模板,可以對(duì)高斯函數(shù)進(jìn)行離散化,得到的高斯函數(shù)值作為模板的系數(shù)。例如:要產(chǎn)生一個(gè)3×33×3的高斯濾波器模板,以模板的中心位置為坐標(biāo)原點(diǎn)進(jìn)行取樣。模板在各個(gè)位置的坐標(biāo),如下所示(x軸水平向右,y軸豎直向下)


高斯濾波器的原理及其實(shí)現(xiàn)過程(附模板代碼)


這樣,將各個(gè)位置的坐標(biāo)帶入到高斯函數(shù)中,得到的值就是模板的系數(shù)。

對(duì)于窗口模板的大小為(2k+1)×(2k+1),模板中各個(gè)元素值的計(jì)算公式如下:


高斯濾波器的原理及其實(shí)現(xiàn)過程(附模板代碼)


這樣計(jì)算出來的模板有兩種形式:小數(shù)和整數(shù)。

  • 小數(shù)形式的模板,就是直接計(jì)算得到的值,沒有經(jīng)過任何的處理;

  • 整數(shù)形式的,則需要進(jìn)行歸一化處理,將模板左上角的值歸一化為1,下面會(huì)具體介紹。使用整數(shù)的模板時(shí),需要在模板的前面加一個(gè)系數(shù),系數(shù)為高斯濾波器的原理及其實(shí)現(xiàn)過程(附模板代碼)也就是模板系數(shù)和的倒數(shù)。


高斯模板的生成


知道模板生成的原理,實(shí)現(xiàn)起來也就不困難了

void generateGaussianTemplate(double window[][11], int ksize, double sigma){ static const double pi = 3.1415926; int center = ksize / 2; // 模板的中心位置,也就是坐標(biāo)的原點(diǎn) double x2, y2; for (int i = 0; i < ksize; i++) { x2 = pow(i - center, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - center, 2); double g = exp(-(x2 + y2) / (2 * sigma * sigma)); g /= 2 * pi * sigma; window[i][j] = g; } } double k = 1 / window[0][0]; // 將左上角的系數(shù)歸一化為1 for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { window[i][j] *= k; } }}


需要一個(gè)二維數(shù)組,存放生成的系數(shù)(這里假設(shè)模板的最大尺寸不會(huì)超過11);第二個(gè)參數(shù)是模板的大小(不要超過11);第三個(gè)參數(shù)就比較重要了,是高斯分布的標(biāo)準(zhǔn)差。
生成的過程,首先根據(jù)模板的大小,找到模板的中心位置ksize/2。然后就是遍歷,根據(jù)高斯分布的函數(shù),計(jì)算模板中每個(gè)系數(shù)的值。

需要注意的是,最后歸一化的過程,使用模板左上角的系數(shù)的倒數(shù)作為歸一化的系數(shù)(左上角的系數(shù)值被歸一化為1),模板中的每個(gè)系數(shù)都乘以該值(左上角系數(shù)的倒數(shù)),然后將得到的值取整,就得到了整數(shù)型的高斯濾波器模板。

下面截圖生成的是,大小為3×3,σ=0.83×3,σ=0.8的模板


高斯濾波器的原理及其實(shí)現(xiàn)過程(附模板代碼)


對(duì)上述解結(jié)果取整后得到如下模板:


高斯濾波器的原理及其實(shí)現(xiàn)過程(附模板代碼)


這個(gè)模板就比較熟悉了,其就是根據(jù)σ=0.8的高斯函數(shù)生成的模板。

至于小數(shù)形式的生成也比較簡(jiǎn)單,去掉歸一化的過程,并且在求解過程后,模板的每個(gè)系數(shù)要除以所有系數(shù)的和。具體代碼如下:
void generateGaussianTemplate(double window[][11], int ksize, double sigma){ static const double pi = 3.1415926; int center = ksize / 2; // 模板的中心位置,也就是坐標(biāo)的原點(diǎn) double x2, y2; double sum = 0; for (int i = 0; i < ksize; i++) { x2 = pow(i - center, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - center, 2); double g = exp(-(x2 + y2) / (2 * sigma * sigma)); g /= 2 * pi * sigma; sum += g; window[i][j] = g; } } //double k = 1 / window[0][0]; // 將左上角的系數(shù)歸一化為1 for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { window[i][j] /= sum; } }}

3×3,σ=0.8的小數(shù)型模板。

高斯濾波器的原理及其實(shí)現(xiàn)過程(附模板代碼)

σσ值的意義及選取

通過上述的實(shí)現(xiàn)過程,不難發(fā)現(xiàn),高斯濾波器模板的生成最重要的參數(shù)就是高斯分布的標(biāo)準(zhǔn)差σσ。標(biāo)準(zhǔn)差代表著數(shù)據(jù)的離散程度,如果σσ較小,那么生成的模板的中心系數(shù)較大,而周圍的系數(shù)較小,這樣對(duì)圖像的平滑效果就不是很明顯;反之,σσ較大,則生成的模板的各個(gè)系數(shù)相差就不是很大,比較類似均值模板,對(duì)圖像的平滑效果比較明顯。

來看下一維高斯分布的概率分布密度圖:


高斯濾波器的原理及其實(shí)現(xiàn)過程(附模板代碼)


橫軸表示可能得取值x,豎軸表示概率分布密度F(x),那么不難理解這樣一個(gè)曲線與x軸圍成的圖形面積為1。σσ(標(biāo)準(zhǔn)差)決定了這個(gè)圖形的寬度,可以得出這樣的結(jié)論:σσ越大,則圖形越寬,尖峰越小,圖形較為平緩;σσ越小,則圖形越窄,越集中,中間部分也就越尖,圖形變化比較劇烈。這其實(shí)很好理解,如果sigma也就是標(biāo)準(zhǔn)差越大,則表示該密度分布一定比較分散,由于面積為1,于是尖峰部分減小,寬度越寬(分布越分散);同理,當(dāng)σσ越小時(shí),說明密度分布較為集中,于是尖峰越尖,寬度越窄!

于是可以得到如下結(jié)論:

σσ越大,分布越分散,各部分比重差別不大,于是生成的模板各元素值差別不大,類似于平均模板;

σσ越小,分布越集中,中間部分所占比重遠(yuǎn)遠(yuǎn)高于其他部分,反映到高斯模板上就是中心元素值遠(yuǎn)遠(yuǎn)大于其他元素值,于是自然而然就相當(dāng)于中間值得點(diǎn)運(yùn)算。

基于OpenCV的實(shí)現(xiàn)





在生成高斯模板好,其簡(jiǎn)單的實(shí)現(xiàn)和其他的空間濾波器沒有區(qū)別,具體代碼如下:
void GaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma){ CV_Assert(src.channels() || src.channels() == 3); // 只處理單通道或者三通道圖像 const static double pi = 3.1415926; // 根據(jù)窗口大小和sigma生成高斯濾波器模板 // 申請(qǐng)一個(gè)二維數(shù)組,存放生成的高斯模板矩陣 double **templateMatrix = new double*[ksize]; for (int i = 0; i < ksize; i++) templateMatrix[i] = new double[ksize]; int origin = ksize / 2; // 以模板的中心為原點(diǎn) double x2, y2; double sum = 0; for (int i = 0; i < ksize; i++) { x2 = pow(i - origin, 2); for (int j = 0; j < ksize; j++) { y2 = pow(j - origin, 2); // 高斯函數(shù)前的常數(shù)可以不用計(jì)算,會(huì)在歸一化的過程中給消去 double g = exp(-(x2 + y2) / (2 * sigma * sigma)); sum += g; templateMatrix[i][j] = g; } } for (int i = 0; i < ksize; i++) { for (int j = 0; j < ksize; j++) { templateMatrix[i][j] /= sum; cout << templateMatrix[i][j] << " "; } cout << endl; } // 將模板應(yīng)用到圖像中 int border = ksize / 2; copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT); int channels = dst.channels(); int rows = dst.rows - border; int cols = dst.cols - border; for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int a = -border; a <= border; a++) { for (int b = -border; b <= border; b++) { if (channels == 1) { sum[0] += templateMatrix[border + a][border + b] * dst.at<uchar>(i + a, j + b); } else if (channels == 3) { Vec3b rgb = dst.at<Vec3b>(i + a, j + b); auto k = templateMatrix[border + a][border + b]; sum[0] += k * rgb[0]; sum[1] += k * rgb[1]; sum[2] += k * rgb[2]; } } } for (int k = 0; k < channels; k++) { if (sum[k] < 0) sum[k] = 0; else if (sum[k] > 255) sum[k] = 255; } if (channels == 1) dst.at<uchar>(i, j) = static_cast<uchar>(sum[0]); else if (channels == 3) { Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) }; dst.at<Vec3b>(i, j) = rgb; } } } // 釋放模板數(shù)組 for (int i = 0; i < ksize; i++) delete[] templateMatrix[i]; delete[] templateMatrix;}

只處理單通道或者三通道圖像,模板生成后,其濾波(卷積過程)就比較簡(jiǎn)單了。不過,這樣的高斯濾波過程,其循環(huán)運(yùn)算次數(shù)為m×n×ksize2,其中m,n為圖像的尺寸;ksize為高斯濾波器的尺寸。這樣其時(shí)間復(fù)雜度為O(ksize2),隨濾波器的模板的尺寸呈平方增長(zhǎng),當(dāng)高斯濾波器的尺寸較大時(shí),其運(yùn)算效率是極低的。為了,提高濾波的運(yùn)算速度,可以將二維的高斯濾波過程分解開來。


分離實(shí)現(xiàn)高斯濾波

由于高斯函數(shù)的可分離性,尺寸較大的高斯濾波器可以分成兩步進(jìn)行:首先將圖像在水平(豎直)方向與一維高斯函數(shù)進(jìn)行卷積;然后將卷積后的結(jié)果在豎直(水平)方向使用相同的一維高斯函數(shù)得到的模板進(jìn)行卷積運(yùn)算。具體實(shí)現(xiàn)代碼如下:
// 分離的計(jì)算void separateGaussianFilter(const Mat &src, Mat &dst, int ksize, double sigma){ CV_Assert(src.channels()==1 || src.channels() == 3); // 只處理單通道或者三通道圖像 // 生成一維的高斯濾波模板 double *matrix = new double[ksize]; double sum = 0; int origin = ksize / 2; for (int i = 0; i < ksize; i++) { // 高斯函數(shù)前的常數(shù)可以不用計(jì)算,會(huì)在歸一化的過程中給消去 double g = exp(-(i - origin) * (i - origin) / (2 * sigma * sigma)); sum += g; matrix[i] = g; } // 歸一化 for (int i = 0; i < ksize; i++) matrix[i] /= sum; // 將模板應(yīng)用到圖像中 int border = ksize / 2; copyMakeBorder(src, dst, border, border, border, border, BorderTypes::BORDER_REFLECT); int channels = dst.channels(); int rows = dst.rows - border; int cols = dst.cols - border; // 水平方向 for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int k = -border; k <= border; k++) { if (channels == 1) { sum[0] += matrix[border + k] * dst.at<uchar>(i, j + k); // 行不變,列變化;先做水平方向的卷積 } else if (channels == 3) { Vec3b rgb = dst.at<Vec3b>(i, j + k); sum[0] += matrix[border + k] * rgb[0]; sum[1] += matrix[border + k] * rgb[1]; sum[2] += matrix[border + k] * rgb[2]; } } for (int k = 0; k < channels; k++) { if (sum[k] < 0) sum[k] = 0; else if (sum[k] > 255) sum[k] = 255; } if (channels == 1) dst.at<uchar>(i, j) = static_cast<uchar>(sum[0]); else if (channels == 3) { Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) }; dst.at<Vec3b>(i, j) = rgb; } } } // 豎直方向 for (int i = border; i < rows; i++) { for (int j = border; j < cols; j++) { double sum[3] = { 0 }; for (int k = -border; k <= border; k++) { if (channels == 1) { sum[0] += matrix[border + k] * dst.at<uchar>(i + k, j); // 列不變,行變化;豎直方向的卷積 } else if (channels == 3) { Vec3b rgb = dst.at<Vec3b>(i + k, j); sum[0] += matrix[border + k] * rgb[0]; sum[1] += matrix[border + k] * rgb[1]; sum[2] += matrix[border + k] * rgb[2]; } } for (int k = 0; k < channels; k++) { if (sum[k] < 0) sum[k] = 0; else if (sum[k] > 255) sum[k] = 255; } if (channels == 1) dst.at<uchar>(i, j) = static_cast<uchar>(sum[0]); else if (channels == 3) { Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) }; dst.at<Vec3b>(i, j) = rgb; } } } delete[] matrix;}

代碼沒有重構(gòu)較長(zhǎng),不過其實(shí)現(xiàn)原理是比較簡(jiǎn)單的。首先得到一維高斯函數(shù)的模板,在卷積(濾波)的過程中,保持行不變,列變化,在水平方向上做卷積運(yùn)算;接著在上述得到的結(jié)果上,保持列不邊,行變化,在豎直方向上做卷積運(yùn)算。這樣分解開來,算法的時(shí)間復(fù)雜度為O(ksize)O(ksize),運(yùn)算量和濾波器的模板尺寸呈線性增長(zhǎng)。

在OpenCV也有對(duì)高斯濾波器的封裝GaussianBlur,其聲明如下:
CV_EXPORTS_W void GaussianBlur( InputArray src, OutputArray dst, Size ksize, double sigmaX, double sigmaY = 0, int borderType = BORDER_DEFAULT );

二維高斯函數(shù)的標(biāo)準(zhǔn)差在x和y方向上應(yīng)該分別有一個(gè)標(biāo)準(zhǔn)差,在上面的代碼中一直設(shè)其在x和y方向的標(biāo)準(zhǔn)是相等的,在OpenCV中的高斯濾波器中,可以在x和y方向上設(shè)置不同的標(biāo)準(zhǔn)差。

下圖是自己實(shí)現(xiàn)的高斯濾波器和OpenCV中的GaussianBlur的結(jié)果對(duì)比


高斯濾波器的原理及其實(shí)現(xiàn)過程(附模板代碼)


上圖是5×5,σ=0.8的高斯濾波器,可以看出兩個(gè)實(shí)現(xiàn)得到的結(jié)果沒有很大的區(qū)別。

總結(jié)

高斯濾波器是一種線性平滑濾波器,其濾波器的模板是對(duì)二維高斯函數(shù)離散得到。由于高斯模板的中心值最大,四周逐漸減小,其濾波后的結(jié)果相對(duì)于均值濾波器來說更好。

高斯濾波器最重要的參數(shù)就是高斯分布的標(biāo)準(zhǔn)差σσ,標(biāo)準(zhǔn)差和高斯濾波器的平滑能力有很大的能力,σσ越大,高斯濾波器的頻帶就較寬,對(duì)圖像的平滑程度就越好。通過調(diào)節(jié)σσ參數(shù),可以平衡對(duì)圖像的噪聲的抑制和對(duì)圖像的模糊。


-END-





免責(zé)聲明:本文系網(wǎng)絡(luò)轉(zhuǎn)載,版權(quán)歸原作者所有。如有問題,請(qǐng)聯(lián)系我們,謝謝!

免責(zé)聲明:本文內(nèi)容由21ic獲得授權(quán)后發(fā)布,版權(quán)歸原作者所有,本平臺(tái)僅提供信息存儲(chǔ)服務(wù)。文章僅代表作者個(gè)人觀點(diǎn),不代表本平臺(tái)立場(chǎng),如有問題,請(qǐng)聯(lián)系我們,謝謝!

21ic電子網(wǎng)

掃描二維碼,關(guān)注更多精彩內(nèi)容

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉