日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁(yè) > 智能硬件 > 人工智能AI
[導(dǎo)讀]   我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制器的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。

  我們可以對(duì)神經(jīng)網(wǎng)絡(luò)架構(gòu)進(jìn)行優(yōu)化,使之適配微控制器的內(nèi)存和計(jì)算限制范圍,并且不會(huì)影響精度。我們將在本文中解釋和探討深度可分離卷積神經(jīng)網(wǎng)絡(luò)在 Cortex-M 處理器上實(shí)現(xiàn)關(guān)鍵詞識(shí)別的潛力。

  

  關(guān)鍵詞識(shí)別 (KWS) 對(duì)于在智能設(shè)備上實(shí)現(xiàn)基于語(yǔ)音的用戶(hù)交互十分關(guān)鍵,需要實(shí)時(shí)響應(yīng)和高精度,才能確保良好的用戶(hù)體驗(yàn)。最近,神經(jīng)網(wǎng)絡(luò)已經(jīng)成為 KWS 架構(gòu)的熱門(mén)選擇,因?yàn)榕c傳統(tǒng)的語(yǔ)音處理算法相比,神經(jīng)網(wǎng)絡(luò)的精度更勝一籌。

  

  關(guān)鍵詞識(shí)別神經(jīng)網(wǎng)絡(luò)管道

  由于要保持“永遠(yuǎn)在線”,KWS 應(yīng)用的功耗預(yù)算受到很大限制。雖然 KWS 應(yīng)用也可在專(zhuān)用 DSP 或高性能 CPU 上運(yùn)行,但更適合在 Arm Cortex-M 微控制器上運(yùn)行,有助于最大限度地降低成本,Arm Cortex-M 微控制器經(jīng)常在物聯(lián)網(wǎng)邊緣用于處理其他任務(wù)。

  但是,要在基于 Cortex-M 的微控制器上部署基于神經(jīng)網(wǎng)絡(luò)的 KWS,我們面臨著以下挑戰(zhàn):

  1. 有限的內(nèi)存空間

  典型的 Cortex-M 系統(tǒng)最多提供幾百 KB 的可用內(nèi)存。這意味著,整個(gè)神經(jīng)網(wǎng)絡(luò)模型,包括輸入/輸出、權(quán)重和激活,都必須在這個(gè)很小的內(nèi)存范圍內(nèi)運(yùn)行。

  2. 有限的計(jì)算資源

  由于 KWS 要保持永遠(yuǎn)在線,這種實(shí)時(shí)性要求限制了每次神經(jīng)網(wǎng)絡(luò)推理的總運(yùn)算數(shù)量。

  以下是適用于 KWS 推理的典型神經(jīng)網(wǎng)絡(luò)架構(gòu):

  • 深度神經(jīng)網(wǎng)絡(luò) (DNN)

  DNN 是標(biāo)準(zhǔn)的前饋神經(jīng)網(wǎng)絡(luò),由全連接層和非線性激活層堆疊而成。

  • 卷積神經(jīng)網(wǎng)絡(luò) (CNN)

  基于 DNN 的 KWS 的一大主要缺陷是無(wú)法為語(yǔ)音功能中的局域關(guān)聯(lián)性、時(shí)域關(guān)聯(lián)性、頻域關(guān)聯(lián)性建模。CNN 則可將輸入時(shí)域和頻域特征當(dāng)作圖像處理,并且在上面執(zhí)行 2D 卷積運(yùn)算,從而發(fā)現(xiàn)這種關(guān)聯(lián)性。

  • 循環(huán)神經(jīng)網(wǎng)絡(luò) (RNN)

  RNN 在很多序列建模任務(wù)中都展現(xiàn)出了出色的性能,特別是在語(yǔ)音識(shí)別、語(yǔ)言建模和翻譯中。RNN 不僅能夠發(fā)現(xiàn)輸入信號(hào)之間的時(shí)域關(guān)系,還能使用“門(mén)控”機(jī)制來(lái)捕捉長(zhǎng)時(shí)依賴(lài)關(guān)系。

  • 卷積循環(huán)神經(jīng)網(wǎng)絡(luò) (CRNN)

  卷積循環(huán)神經(jīng)網(wǎng)絡(luò)是 CNN 和 RNN 的混合,可發(fā)現(xiàn)局部時(shí)間/空間關(guān)聯(lián)性。CRNN 模型從卷積層開(kāi)始,然后是 RNN,對(duì)信號(hào)進(jìn)行編碼,接下來(lái)是密集全連接層。

  • 深度可分離卷積神經(jīng)網(wǎng)絡(luò) (DS-CNN)

  最近,深度可分離卷積神經(jīng)網(wǎng)絡(luò)被推薦為標(biāo)準(zhǔn) 3D 卷積運(yùn)算的高效替代方案,并已用于實(shí)現(xiàn)計(jì)算機(jī)視覺(jué)的緊湊網(wǎng)絡(luò)架構(gòu)。

  DS-CNN 首先使用獨(dú)立的 2D 濾波,對(duì)輸入特征圖中的每個(gè)通道進(jìn)行卷積計(jì)算,然后使用點(diǎn)態(tài)卷積(即 1x1),合并縱深維度中的輸出。通過(guò)將標(biāo)準(zhǔn) 3D 卷積分解為 2D和后續(xù)的 1D,參數(shù)和運(yùn)算的數(shù)量得以減少,從而使得更深和更寬的架構(gòu)成為可能,甚至在資源受限的微控制器器件中也能運(yùn)行。

  在 Cortex-M 處理器上運(yùn)行關(guān)鍵詞識(shí)別時(shí),內(nèi)存占用和執(zhí)行時(shí)間是兩個(gè)最重要因素,在設(shè)計(jì)和優(yōu)化用于該用途的神經(jīng)網(wǎng)絡(luò)時(shí),應(yīng)該考慮到這兩大因素。以下所示的神經(jīng)網(wǎng)絡(luò)的三組限制分別針對(duì)小型、中型和大型 Cortex-M 系統(tǒng),基于典型的 Cortex-M 系統(tǒng)配置。

  

  KWS 模型的神經(jīng)網(wǎng)絡(luò)類(lèi)別 (NN) 類(lèi)別,假定每秒 10 次推理和 8 位權(quán)重/激活

  要調(diào)節(jié)模型,使之不超出微控制器的內(nèi)存和計(jì)算限制范圍,必須執(zhí)行超參數(shù)搜索。下表顯示了神經(jīng)網(wǎng)絡(luò)架構(gòu)及必須優(yōu)化的相應(yīng)超參數(shù)。

  

  神經(jīng)網(wǎng)絡(luò)超參數(shù)搜索空間

  首先執(zhí)行特征提取和神經(jīng)網(wǎng)絡(luò)模型超參數(shù)的窮舉搜索,然后執(zhí)行手動(dòng)選擇以縮小搜索空間,這兩者反復(fù)執(zhí)行。下圖總結(jié)了適用于每種神經(jīng)網(wǎng)絡(luò)架構(gòu)的最佳性能模型及相應(yīng)的內(nèi)存要求和運(yùn)算。DS-CNN 架構(gòu)提供最高的精度,而且需要的內(nèi)存和計(jì)算資源也低得多。

  

  最佳神經(jīng)網(wǎng)絡(luò)模型中內(nèi)存與運(yùn)算/推理的關(guān)系

  KWS 應(yīng)用部署在基于 Cortex-M7 的 STM32F746G-DISCO 開(kāi)發(fā)板上(如下圖所示),使用包含 8 位權(quán)重和 8 位激活的 DNN 模型,KWS 在運(yùn)行時(shí)每秒執(zhí)行 10 次推理。每次推理(包括內(nèi)存復(fù)制、MFCC 特征提取、DNN 執(zhí)行)花費(fèi)大約 12 毫秒。為了節(jié)省功耗,可讓微控制器在余下時(shí)間處于等待中斷 (WFI) 模式。整個(gè) KWS 應(yīng)用占用大約 70 KB 內(nèi)存,包括大約 66 KB 用于權(quán)重、大約 1 KB 用于激活、大約 2 KB 用于音頻 I/O 和 MFCC 特征。

  

  Cortex-M7 開(kāi)發(fā)板上的 KWS 部署

  總而言之,Arm Cortex-M 處理器可以在關(guān)鍵詞識(shí)別應(yīng)用中達(dá)到很高的精度,同時(shí)通過(guò)調(diào)整網(wǎng)絡(luò)架構(gòu)來(lái)限制內(nèi)存和計(jì)算需求。DS-CNN 架構(gòu)提供最高的精度,而且需要的內(nèi)存和計(jì)算資源也低得多。

  代碼、模型定義和預(yù)訓(xùn)練模型可從 github.com/ARM-software 獲取。

  我們?nèi)碌臋C(jī)器學(xué)習(xí)開(kāi)發(fā)人員網(wǎng)站提供一站式資源庫(kù)、詳細(xì)產(chǎn)品信息和教程,幫助應(yīng)對(duì)網(wǎng)絡(luò)邊緣的機(jī)器學(xué)習(xí)所面臨的挑戰(zhàn)。

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專(zhuān)欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問(wèn)題卻十分常見(jiàn),不僅增加了維護(hù)成本,還影響了用戶(hù)體驗(yàn)。要解決這一問(wèn)題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(chē)(EV)作為新能源汽車(chē)的重要代表,正逐漸成為全球汽車(chē)產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車(chē)的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車(chē)的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車(chē) 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車(chē)場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問(wèn)題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周?chē)娮釉O(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開(kāi)關(guān)電源具有效率高的特性,而且開(kāi)關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開(kāi)關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉