日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 智能硬件 > 人工智能AI
[導讀] 上一次我們用了單隱層的神經網絡,效果還可以改善,這一次就使用CNN。 卷積神經網絡 上圖演示了卷積操作 LeNet-5式的卷積神經網絡,是計算機視覺領域近期取得

上一次我們用了單隱層的神經網絡,效果還可以改善,這一次就使用CNN。

卷積神經網絡

上圖演示了卷積操作

LeNet-5式的卷積神經網絡,是計算機視覺領域近期取得的巨大突破的核心。卷積層和之前的全連接層不同,采用了一些技巧來避免過多的參數個數,但保持了模型的描述能力。這些技巧是:
1, 局部聯結:神經元僅僅聯結前一層神經元的一小部分。
2, 權重共享:在卷積層,神經元子集之間的權重是共享的。(這些神經元的形式被稱為特征圖[feature map])
3, 池化:對輸入進行靜態(tài)的子采樣。

局部性和權重共享的圖示

卷積層的單元實際上連接了前一層神經元中的一個2維patch,這個前提讓網絡利用了輸入中的2維結構。

當使用Lasagne中的卷積層時,我們必須進行一些輸入準備。輸入不再像剛剛一樣是一個9216像素強度的扁平向量,而是一個有著(c,0,1)形式的三維矩陣,其中c代表通道(顏色),0和1對應著圖像的x和y維度。在我們的問題中,具體的三維矩陣為(1,96,96),因為我們僅僅使用了灰度一個顏色通道。

一個函數load2d對前述的load函數進行了包裝,完成這個2維到三維的轉變:
def load2d(test=False, cols=None):
X, y = load(test=test)
X = X.reshape(-1, 1, 96, 96)
return X, y

我們將要創(chuàng)建一個具有三個卷積層和兩個全連接層的卷積神經網絡。每個卷積層都跟著一個2*2的最大化池化層。初始卷積層有32個filter,之后每個卷積層我們把filter的數量翻番。全連接的隱層包含500個神經元。

這里還是一樣沒有任何形式(懲罰權重或者dropout)的正則化。事實證明當我們使用尺寸非常小的filter,如3*3或2*2,已經起到了非常不錯的正則化效果。

代碼如下:
net2 = NeuralNet(
layers=[
('input', layers.InputLayer),
('conv1', layers.Conv2DLayer),
('pool1', layers.MaxPool2DLayer),
('conv2', layers.Conv2DLayer),
('pool2', layers.MaxPool2DLayer),
('conv3', layers.Conv2DLayer),
('pool3', layers.MaxPool2DLayer),
('hidden4', layers.DenseLayer),
('hidden5', layers.DenseLayer),
('output', layers.DenseLayer),
],
input_shape=(None, 1, 96, 96),
conv1_num_filters=32, conv1_filter_size=(3, 3), pool1_pool_size=(2, 2),
conv2_num_filters=64, conv2_filter_size=(2, 2), pool2_pool_size=(2, 2),
conv3_num_filters=128, conv3_filter_size=(2, 2), pool3_pool_size=(2, 2),
hidden4_num_units=500, hidden5_num_units=500,
output_num_units=30, output_nonlinearity=None,

update_learning_rate=0.01,
update_momentum=0.9,

regression=True,
max_epochs=1000,
verbose=1,
)

X, y = load2d() # load 2-d data
net2.fit(X, y)

# Training for 1000 epochs will take a while. We'll pickle the
# trained model so that we can load it back later:
import cPickle as pickle
with open('net2.pickle', 'wb') as f:
pickle.dump(net2, f, -1)

訓練這個網絡和第一個網絡相比,將要耗費巨大的時空資源。每次迭代要慢15倍,整個1000次迭代下來要耗費20多分鐘的時間,這還是在你有一個相當不錯的GPU的基礎上。

然而耐心總是得到回饋,我們的模型和結果自然比剛剛好得多。讓我們來看一看運行腳本時的輸出。首先是輸出形狀的層列表,注意因為我們選擇的窗口尺寸,第一個卷積層的32個filter輸出了32張94*94 的特征圖。
InputLayer (None, 1, 96, 96) produces 9216 outputs
Conv2DCCLayer (None, 32, 94, 94) produces 282752 outputs
MaxPool2DCCLayer (None, 32, 47, 47) produces 70688 outputs
Conv2DCCLayer (None, 64, 46, 46) produces 135424 outputs
MaxPool2DCCLayer (None, 64, 23, 23) produces 33856 outputs
Conv2DCCLayer (None, 128, 22, 22) produces 61952 outputs
MaxPool2DCCLayer (None, 128, 11, 11) produces 15488 outputs
DenseLayer (None, 500) produces 500 outputs
DenseLayer (None, 500) produces 500 outputs
DenseLayer (None, 30) produces 30 outputs

接下來我們看到,和第一個網絡輸出相同,是每一次迭代訓練損失和驗證損失以及他們之間的比率。
Epoch | Train loss | Valid loss | Train / Val
--------|--------------|--------------|----------------
1 | 0.111763 | 0.042740 | 2.614934
2 | 0.018500 | 0.009413 | 1.965295
3 | 0.008598 | 0.007918 | 1.085823
4 | 0.007292 | 0.007284 | 1.001139
5 | 0.006783 | 0.006841 | 0.991525
...
500 | 0.001791 | 0.002013 | 0.889810
501 | 0.001789 | 0.002011 | 0.889433
502 | 0.001786 | 0.002009 | 0.889044
503 | 0.001783 | 0.002007 | 0.888534
504 | 0.001780 | 0.002004 | 0.888095
505 | 0.001777 | 0.002002 | 0.887699
...
995 | 0.001083 | 0.001568 | 0.690497
996 | 0.001082 | 0.001567 | 0.690216
997 | 0.001081 | 0.001567 | 0.689867
998 | 0.001080 | 0.001567 | 0.689595
999 | 0.001080 | 0.001567 | 0.689089
1000 | 0.001079 | 0.001566 | 0.688874

1000次迭代后的結果相對第一個網絡,有了非常不錯的改善,我們的RMSE也有不錯的結果。
>>> np.sqrt(0.001566) * 48
1.8994904579913006

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉