日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 智能硬件 > 人工智能AI
[導讀] 自從AlexNet一舉奪得ILSVRC 2012 ImageNet圖像分類競賽的冠軍后,卷積神經網絡(CNN)的熱潮便席卷了整個計算機視覺領域。CNN模型火速替代了傳統(tǒng)人工設計(hand-cra

自從AlexNet一舉奪得ILSVRC 2012 ImageNet圖像分類競賽的冠軍后,卷積神經網絡(CNN)的熱潮便席卷了整個計算機視覺領域。CNN模型火速替代了傳統(tǒng)人工設計(hand-crafted)特征和分類器,不僅提供了一種端到端的處理方法,還大幅度地刷新了各個圖像競賽任務的精度,更甚者超越了人眼的精度(LFW人臉識別任務)。CNN模型在不斷逼近計算機視覺任務的精度極限的同時,其深度和尺寸也在成倍增長。
 

表1 幾種經典模型的尺寸,計算量和參數數量對比

Model Model Size(MB) Million
Mult-Adds Million
Parameters
AlexNet[1] >200 720 60 
VGG16[2] >500 15300 138 
GoogleNet[3] ~50 1550 6.8 
IncepTIon-v3[4] 90-100 5000 23.2

隨之而來的是一個很尷尬的場景:如此巨大的模型只能在有限的平臺下使用,根本無法移植到移動端和嵌入式芯片當中。就算想通過網絡傳輸,但較高的帶寬占用也讓很多用戶望而生畏。另一方面,大尺寸的模型也對設備功耗和運行速度帶來了巨大的挑戰(zhàn)。因此這樣的模型距離實用還有一段距離。

在這樣的情形下,模型小型化與加速成了亟待解決的問題。其實早期就有學者提出了一系列CNN模型壓縮方法,包括權值剪值(prunning)和矩陣SVD分解等,但壓縮率和效率還遠不能令人滿意。

近年來,關于模型小型化的算法從壓縮角度上可以大致分為兩類:從模型權重數值角度壓縮和從網絡架構角度壓縮。另一方面,從兼顧計算速度方面,又可以劃分為:僅壓縮尺寸和壓縮尺寸的同時提升速度。

本文主要討論如下幾篇代表性的文章和方法,包括SqueezeNet[5]、Deep Compression[6]、XNorNet[7]、DisTIlling[8]、MobileNet[9]和ShuffleNet[10],也可按照上述方法進行大致分類:

表2 幾種經典壓縮方法及對比

Method Compression Approach Speed ConsideraTIon
SqueezeNet architecture No 
Deep Compression weights No 
XNorNet weights Yes 
DisTIlling architecture No 
MobileNet architecture Yes 
ShuffleNet architecture Yes

一、SqueezeNet

1.1 設計思想

SqueezeNet是F. N. Iandola,S.Han等人于2016年的論文《SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size》中提出的一個小型化的網絡模型結構,該網絡能在保證不損失精度的同時,將原始AlexNet壓縮至原來的510倍左右(< 0.5MB)。

SqueezeNet的核心指導思想是——在保證精度的同時使用最少的參數。

而這也是所有模型壓縮方法的一個終極目標。

基于這個思想,SqueezeNet提出了3點網絡結構設計策略:

策略 1.將3x3卷積核替換為1x1卷積核。

這一策略很好理解,因為1個1x1卷積核的參數是3x3卷積核參數的1/9,這一改動理論上可以將模型尺寸壓縮9倍。

策略 2.減小輸入到3x3卷積核的輸入通道數。

我們知道,對于一個采用3x3卷積核的卷積層,該層所有卷積參數的數量(不考慮偏置)為:

式中,N是卷積核的數量,也即輸出通道數,C是輸入通道數。

因此,為了保證減小網絡參數,不僅僅需要減少3x3卷積核的數量,還需減少輸入到3x3卷積核的輸入通道數量,即式中C的數量。

策略 3.盡可能的將降采樣放在網絡后面的層中。

在卷積神經網絡中,每層輸出的特征圖(feature map)是否下采樣是由卷積層的步長或者池化層決定的。而一個重要的觀點是:分辨率越大的特征圖(延遲降采樣)可以帶來更高的分類精度,而這一觀點從直覺上也可以很好理解,因為分辨率越大的輸入能夠提供的信息就越多。

上述三個策略中,前兩個策略都是針對如何降低參數數量而設計的,最后一個旨在最大化網絡精度。

1.2 網絡架構

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉