日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 嵌入式 > 嵌入式云IOT技術(shù)圈
[導讀]有限自動機(Finite Automata Machine)是計算機科學的重要基石,它在軟件開發(fā)領(lǐng)域內(nèi)通常被稱作有限狀態(tài)機(Finite State Machine),是一種應(yīng)用非常廣泛的軟件設(shè)計模式(Design Pattern)。本文介紹如何構(gòu)建基于狀態(tài)機的軟件系統(tǒng),以及如何利用Linux下的工具










有限自動機(Finite Automata Machine)是計算機科學的重要基石,它在軟件開發(fā)領(lǐng)域內(nèi)通常被稱作有限狀態(tài)機(Finite State Machine),是一種應(yīng)用非常廣泛的軟件設(shè)計模式(Design Pattern)。本文介紹如何構(gòu)建基于狀態(tài)機的軟件系統(tǒng),以及如何利用Linux下的工具來自動生成實用的狀態(tài)機框架。

一、什么是狀態(tài)機

有限狀態(tài)機是一種用來進行對象行為建模的工具,其作用主要是描述對象在它的生命周期內(nèi)所經(jīng)歷的狀態(tài)序列,以及如何響應(yīng)來自外界的各種事件。在面向?qū)ο蟮能浖到y(tǒng)中,一個對象無論多么簡單或者多么復雜,都必然會經(jīng)歷一個從開始創(chuàng)建到最終消亡的完整過程,這通常被稱為對象的生命周期。一般說來,對象在其生命期內(nèi)是不可能完全孤立的,它必須通過發(fā)送消息來影響其它對象,或者通過接受消息來改變自身。在大多數(shù)情況下,這些消息都只不過是些簡單的、同步的方法調(diào)用而已。例如,在銀行客戶管理系統(tǒng)中,客戶類(Customer)的實例在需要的時候,可能會調(diào)用帳戶(Account)類中定義的getBalance()方法。在這種簡單的情況下,類Customer并不需要一個有限狀態(tài)機來描述自己的行為,主要原因在于它當前的行為并不依賴于過去的某個狀態(tài)。

遺憾的是并不是所有情況都會如此簡單,事實上許多實用的軟件系統(tǒng)都必須維護一兩個非常關(guān)鍵的對象,它們通常具有非常復雜的狀態(tài)轉(zhuǎn)換關(guān)系,而且需要對來自外部的各種異步事件進行響應(yīng)。例如,在VoIP電話系統(tǒng)中,電話類(Telephone)的實例必須能夠響應(yīng)來自對方的隨機呼叫,來自用戶的按鍵事件,以及來自網(wǎng)絡(luò)的信令等。在處理這些消息時,類Telephone所要采取的行為完全依賴于它當前所處的狀態(tài),因而此時使用狀態(tài)機就將是一個不錯的選擇。

游戲引擎是有限狀態(tài)機最為成功的應(yīng)用領(lǐng)域之一,由于設(shè)計良好的狀態(tài)機能夠被用來取代部分的人工智能算法,因此游戲中的每個角色或者器件都有可能內(nèi)嵌一個狀態(tài)機??紤]RPG游戲中城門這樣一個簡單的對象,它具有打開(Opened)、關(guān)閉(Closed)、上鎖(Locked)、解鎖(Unlocked)四種狀態(tài),如圖1所示。當玩家到達一個處于狀態(tài)Locked的門時,如果此時他已經(jīng)找到了用來開門的鑰匙,那么他就可以利用它將門的當前狀態(tài)轉(zhuǎn)變?yōu)閁nlocked,進一步還可以通過旋轉(zhuǎn)門上的把手將其狀態(tài)轉(zhuǎn)變?yōu)镺pened,從而成功地進入城內(nèi)。

圖1 控制城門的狀態(tài)機

在描述有限狀態(tài)機時,狀態(tài)、事件、轉(zhuǎn)換和動作是經(jīng)常會碰到的幾個基本概念。

  • 狀態(tài)(State) 指的是對象在其生命周期中的一種狀況,處于某個特定狀態(tài)中的對象必然會滿足某些條件、執(zhí)行某些動作或者是等待某些事件。
  • 事件(Event) 指的是在時間和空間上占有一定位置,并且對狀態(tài)機來講是有意義的那些事情。事件通常會引起狀態(tài)的變遷,促使狀態(tài)機從一種狀態(tài)切換到另一種狀態(tài)。
  • 轉(zhuǎn)換(Transition) 指的是兩個狀態(tài)之間的一種關(guān)系,表明對象將在第一個狀態(tài)中執(zhí)行一定的動作,并將在某個事件發(fā)生- 同時某個特定條件滿足時進入第二個狀態(tài)。
  • 動作(Action) 指的是狀態(tài)機中可以執(zhí)行的那些原子操作,所謂原子操作指的是它們在運行的過程中不能被其他消息所中斷,必須一直執(zhí)行下去。

二、手工編寫狀態(tài)機

與其他常用的設(shè)計模式有所不同,程序員想要在自己的軟件系統(tǒng)中加入狀態(tài)機時,必須再額外編寫一部分用于邏輯控制的代碼,如果系統(tǒng)足夠復雜的話,這部分代碼實現(xiàn)和維護起來還是相當困難的。在實現(xiàn)有限狀態(tài)機時,使用switch語句是最簡單也是最直接的一種方式,其基本思路是為狀態(tài)機中的每一種狀態(tài)都設(shè)置一個case分支,專門用于對該狀態(tài)進行控制。下面的代碼示范了如何運用switch語句,來實現(xiàn)圖1中所示的狀態(tài)機:

switch (state)  {

// 處理狀態(tài)Opened的分支
case (Opened): {
// 執(zhí)行動作Open
open();
// 檢查是否有CloseDoor事件
if (closeDoor()) {
// 當前狀態(tài)轉(zhuǎn)換為Closed
changeState(Closed)
}
break;
}

// 處理狀態(tài)Closed的分支
case (Closed): {
// 執(zhí)行動作Close
close();
// 檢查是否有OpenDoor事件
if (openDoor()) {
// 當前狀態(tài)轉(zhuǎn)換為Opened
changeState(Opened);
}
// 檢查是否有LockDoor事件
if (lockDoor()) {
// 當前狀態(tài)轉(zhuǎn)換為Locked
changeState(Locked);
}
break;
}

// 處理狀態(tài)Locked的分支
case (Locked): {
// 執(zhí)行動作Lock
lock();
// 檢查是否有UnlockDoor事件
if (unlockDoor()) {
// 當前狀態(tài)轉(zhuǎn)換為Unlocked
changeState(Unlocked);
}
break;
}

// 處理狀態(tài)Unlocked的分支
case (Unlocked): {
// 執(zhí)行動作Unlock
unlock();
// 檢查是否有LockDoor事件
if (lockDoor()) {
// 當前狀態(tài)轉(zhuǎn)換為Locked
changeState(Locked)
}
// 檢查是否有OpenDoor事件
if (openDoor()) {
// 當前狀態(tài)轉(zhuǎn)換為Opened
changeSate(Opened);
}
break;
}
}

使用switch語句實現(xiàn)的有限狀態(tài)機的確能夠很好地工作,但代碼的可讀性并不十分理想,主要原因是在實現(xiàn)狀態(tài)之間的轉(zhuǎn)換時,檢查轉(zhuǎn)換條件和進行狀態(tài)轉(zhuǎn)換都是混雜在當前狀態(tài)中來完成的。例如,當城門處于Opened狀態(tài)時,需要在相應(yīng)的case中調(diào)用closeDoor()函數(shù)來檢查是否有必要進行狀態(tài)轉(zhuǎn)換,如果是的話則還需要調(diào)用changeState()函數(shù)將當前狀態(tài)切換到Closed。顯然,如果在每種狀態(tài)下都需要分別檢查多個不同的轉(zhuǎn)換條件,并且需要根據(jù)檢查結(jié)果讓狀態(tài)機切換到不同的狀態(tài),那么這樣的代碼將是枯燥而難懂的。從代碼重構(gòu)的角度來講,此時更好的做法是引入checkStateChange()和performStateChange()兩個函數(shù),專門用來對轉(zhuǎn)換條件進行檢查,以及激活轉(zhuǎn)換時所需要執(zhí)行的各種動作。這樣一來,程序結(jié)構(gòu)將變得更加清晰:

switch (state)  {

// 處理狀態(tài)Opened的分支
case (Opened): {
// 執(zhí)行動作Open
open();
// 檢查是否有激發(fā)狀態(tài)轉(zhuǎn)換的事件產(chǎn)生
if (checkStateChange()) {
// 對狀態(tài)機的狀態(tài)進行轉(zhuǎn)換
performStateChange();
}
break;
}

// 處理狀態(tài)Closed的分支
case (Closed): {
// 執(zhí)行動作Close
close();
// 檢查是否有激發(fā)狀態(tài)轉(zhuǎn)換的事件產(chǎn)生
if (checkStateChange()) {
// 對狀態(tài)機的狀態(tài)進行轉(zhuǎn)換
performStateChange();
}
break;
}

// 處理狀態(tài)Locked的分支
case (Locked): {
// 執(zhí)行動作Lock
lock();
// 檢查是否有激發(fā)狀態(tài)轉(zhuǎn)換的事件產(chǎn)生
if (checkStateChange()) {
// 對狀態(tài)機的狀態(tài)進行轉(zhuǎn)換
performStateChange();
}
break;
}

// 處理狀態(tài)Unlocked的分支
case (Unlocked): {
// 執(zhí)行動作Lock
unlock();
// 檢查是否有激發(fā)狀態(tài)轉(zhuǎn)換的事件產(chǎn)生
if (checkStateChange()) {
// 對狀態(tài)機的狀態(tài)進行轉(zhuǎn)換
performStateChange();
}
break;
}
}

但checkStateChange()和performStateChange()這兩個函數(shù)本身依然會在面對很復雜的狀態(tài)機時,內(nèi)部邏輯變得異常臃腫,甚至可能是難以實現(xiàn)。

在很長一段時期內(nèi),使用switch語句一直是實現(xiàn)有限狀態(tài)機的唯一方法,甚至像編譯器這樣復雜的軟件系統(tǒng),大部分也都直接采用這種實現(xiàn)方式。但之后隨著狀態(tài)機應(yīng)用的逐漸深入,構(gòu)造出來的狀態(tài)機越來越復雜,這種方法也開始面臨各種嚴峻的考驗,其中最令人頭痛的是如果狀態(tài)機中的狀態(tài)非常多,或者狀態(tài)之間的轉(zhuǎn)換關(guān)系異常復雜,那么簡單地使用switch語句構(gòu)造出來的狀態(tài)機將是不可維護的。

三、自動生成狀態(tài)機

為實用的軟件系統(tǒng)編寫狀態(tài)機并不是一件十分輕松的事情,特別是當狀態(tài)機本身比較復雜的時候尤其如此,許多有過類似經(jīng)歷的程序員往往將其形容為"毫無創(chuàng)意"的過程,因為他們需要將大量的時間與精力傾注在如何管理好狀態(tài)機中的各種狀態(tài)上,而不是程序本身的運行邏輯。作為一種通用的軟件設(shè)計模式,各種軟件系統(tǒng)的狀態(tài)機之間肯定會或多或少地存在著一些共性,因此人們開始嘗試開發(fā)一些工具來自動生成有限狀態(tài)機的框架代碼,而在Linux下就有一個挺不錯的選擇──FSME(Finite State Machine Editor)。

圖2 可視化的FSME

FSME是一個基于Qt的有限狀態(tài)機工具,它能夠讓用戶通過圖形化的方式來對程序中所需要的狀態(tài)機進行建模,并且還能夠自動生成用C++或者Python實現(xiàn)的狀態(tài)機框架代碼。下面就以圖1中城門的狀態(tài)機為例,來介紹如何利用FSME來自動生成程序中所需要的狀態(tài)機代碼。

3.1狀態(tài)機建模

首先運行fsme命令來啟動狀態(tài)機編輯器,然后單擊工具欄上的"New"按鈕來創(chuàng)建一個新的狀態(tài)機。FSME中用于構(gòu)建狀態(tài)機的基本元素一共有五種:事件(Event)、輸入(Input)、輸出(Output)、狀態(tài)(State)和轉(zhuǎn)換(Transition),在界面左邊的樹形列表中可以找到其中的四種。

  • 狀態(tài)建模

在FSME界面左邊的樹形列表中選擇"States"項,然后按下鍵盤上的Insert鍵來插入一個新的狀態(tài),接著在右下方的"Name"文本框中輸入狀態(tài)的名稱,再在右上方的繪圖區(qū)域單擊該狀態(tài)所要放置的位置,一個新的狀態(tài)就創(chuàng)建好了。用同樣的辦法可以添加狀態(tài)機所需要的所有狀態(tài),如圖3所示。

圖3 狀態(tài)建模

  • 事件建模

在FSME界面左邊的樹形列表中選擇"Events"項,然后按下鍵盤上的Insert鍵來添加一個新的事件,接著在右下方的"Name"文本框中輸入事件的名稱,再單擊"Apply"按鈕,一個新的事件就創(chuàng)建好了。用同樣的辦法可以添加狀態(tài)機所需要的所有事件,如圖4所示。

  • 轉(zhuǎn)換建模

狀態(tài)轉(zhuǎn)換是整個建模過程中最重要的一個部分,它用來定義有限狀態(tài)機中的一個狀態(tài)是如何切換到另一個狀態(tài)的。例如,當用來控制城門的狀態(tài)機處于Opened狀態(tài)時,如果此時有Close事件產(chǎn)生,那么狀態(tài)機的當前狀態(tài)將切換到Closed狀態(tài),這樣一個完整的過程在狀態(tài)機模型中可以用closeDoor這樣一個轉(zhuǎn)換來進行描述。

要在FSME中添加這樣一個轉(zhuǎn)換,首先需要在界面左邊的樹形列表中選擇"States"下的"Opened"項,然后按下鍵盤上的Insert鍵來添加一個新的轉(zhuǎn)換,接著在右下角的"Name"文本框中輸入轉(zhuǎn)換的名字"closeDoor",在"Condition"文本框中輸入"Close"表明觸發(fā)該轉(zhuǎn)換的條件是事件Close的產(chǎn)生,在"Target"下拉框中選擇"Closed"項表明該轉(zhuǎn)換發(fā)生后狀態(tài)機將被切換到Closed狀態(tài),最后再單擊"Apply"按鈕,一個新的狀態(tài)轉(zhuǎn)換關(guān)系就定義好了,如圖5所示。用同樣的辦法可以添加狀態(tài)機所需要的所有轉(zhuǎn)換。

圖5 轉(zhuǎn)換建模

3.2 生成狀態(tài)機框架

使用FSME不僅能夠進行可視化的狀態(tài)機建模,更重要的是它還可以根據(jù)得到的模型自動生成用C++或者Python實現(xiàn)的狀態(tài)機框架。首先在FSME界面左邊的樹形列表中選擇"Root"項,然后在右下角的"Name"文本框中輸入狀態(tài)機的名字"DoorFSM",再從"Initial State"下拉列表中選擇狀態(tài)"Opened"作為狀態(tài)機的初始化狀態(tài),如圖6所示。

圖6 設(shè)置初始屬性


在將狀態(tài)機模型保存為door.fsm文件之后,使用下面的命令可以生成包含有狀態(tài)機定義的頭文件:

[xiaowp@linuxgam code]$ fsmc door.fsm -d -o DoorFSM.h

進一步還可以生成包含有狀態(tài)機實現(xiàn)的框架代碼:

[xiaowp@linuxgam code]$ fsmc door.fsm -d -impl DoorFSM.h -o DoorFSM.cpp

如果想對生成的狀態(tài)機進行驗證,只需要再手工編寫一段用于測試的代碼就可以了:

/*
* TestFSM.cpp
* 測試生成的狀態(tài)機框架
*/

#include "DoorFSM.h"

int main()
{
DoorFSM door;
door.A(DoorFSM::Close);
door.A(DoorFSM::Lock);
door.A(DoorFSM::Unlock);
door.A(DoorFSM::Open);
}

有限狀態(tài)機是由事件來進行驅(qū)動的,在FSME生成的狀態(tài)機框架代碼中,方法A()可以被用來向狀態(tài)機發(fā)送相應(yīng)的事件,從而提供狀態(tài)機正常運轉(zhuǎn)所需要的"動力"。狀態(tài)機負責在其內(nèi)部維護一個事件隊列,所有到達的事件都會先被放到事件隊列中進行等候,從而能夠保證它們將按照到達的先后順序被依次處理。在處理每一個到達的事件時,狀態(tài)機都會根據(jù)自己當前所處的狀態(tài),檢查與該狀態(tài)對應(yīng)的轉(zhuǎn)換條件是否已經(jīng)被滿足,如果滿足的話則激活相應(yīng)的狀態(tài)轉(zhuǎn)換過程。

使用下面的命令能夠?qū)⑸傻臓顟B(tài)機框架和測試代碼編譯成一個可執(zhí)行文件:

[xiaowp@linuxgam code]$ g++ DoorFSM.cpp TestFSM.cpp -o fsm

由于之前在用fsmc命令生成狀態(tài)機代碼時使用了-d選項,生成的狀態(tài)機框架中會包含一定的調(diào)試信息,包括狀態(tài)機中每次狀態(tài)轉(zhuǎn)換時的激活事件、轉(zhuǎn)換前的狀態(tài)、所經(jīng)歷的轉(zhuǎn)換、轉(zhuǎn)換后的狀態(tài)等,如下所示:

[xiaowp@linuxgam code]$ ./fsm
DoorFSM:event:'Close'
DoorFSM:state:'Opened'
DoorFSM:transition:'closeDoor'
DoorFSM:new state:'Closed'
DoorFSM:event:'Lock'
DoorFSM:state:'Closed'
DoorFSM:transition:'lockDoor'
DoorFSM:new state:'Locked'
DoorFSM:event:'Unlock'
DoorFSM:state:'Locked'
DoorFSM:transition:'unlockDoor'
DoorFSM:new state:'Unlocked'
DoorFSM:event:'Open'
DoorFSM:state:'Unlocked'
DoorFSM:transition:'openDoor'
DoorFSM:new state:'Opened'

3.3 定制狀態(tài)機

目前得到的狀態(tài)機已經(jīng)能夠響應(yīng)來自外部的各種事件,并適當?shù)卣{(diào)整自己當前所處的狀態(tài),也就是說已經(jīng)實現(xiàn)了狀態(tài)機引擎的功能,接下來要做的就是根據(jù)應(yīng)用的具體需求來進行定制,為狀態(tài)機加入與軟件系統(tǒng)本身相關(guān)的那些處理邏輯。在FSME中,與具體應(yīng)用相關(guān)的操作稱為輸出(Output),它們實際上就是一些需要用戶給出具體實現(xiàn)的虛函數(shù),自動生成的狀態(tài)機引擎負責在進入或者退出某個狀態(tài)時調(diào)用它們。

仍然以控制城門的那個狀態(tài)機為例,假設(shè)我們希望在進入每個狀態(tài)時都添加一部分處理邏輯。首在FSME界面左邊的樹形列表選擇"Outputs"項,然后按下鍵盤上的Insert鍵來添加一個新的輸出,接著在右下方的"Name"文本框中輸入相應(yīng)的名稱,再單擊"Apply"按鈕,一個新的輸出就創(chuàng)建好了,如圖7所示。用同樣的辦法可以添加狀態(tài)機所需要的所有輸出。

圖7 添加輸出

當所有的輸出都定義好之后,接下來就可以為狀態(tài)機中的每個狀態(tài)綁定相應(yīng)的輸出。首先在FSME界面左側(cè)的"States"項中選擇相應(yīng)的狀態(tài),然后從右下角的"Available"列表框中選擇與該狀態(tài)對應(yīng)的輸出,再單擊"<"按鈕將其添加到"In"列表中,如圖8所示。用同樣的辦法可以為狀態(tài)機中的所有狀態(tài)設(shè)置相應(yīng)的輸出,同一個狀態(tài)可以對應(yīng)有多個輸出,其中In列表中的輸出會在進入該狀態(tài)時被調(diào)用,而Out列表中的輸出則會在退出該狀態(tài)時被調(diào)用,輸出調(diào)用的順序是與其在In或者Out列表中的順序相一致的。

圖8 為狀態(tài)設(shè)置輸出


由于對狀態(tài)機模型進行了修改,我們需要再次生成狀態(tài)機的框架代碼,不過這次不需要加上-d參數(shù):

[xiaowp@linuxgam code]$ fsmc door.fsm -o DoorFSM.h
[xiaowp@linuxgam code]$ fsmc door.fsm -d -impl DoorFSM.h -o DoorFSM.cpp

我們在新的狀態(tài)機模型中添加了enterOpend、enterClosed、enterLocked和enterUnlocked四個輸出,因此生成的類DoorFSM中會包含如下幾個純虛函數(shù):

virtual void enterOpened() = 0;
virtual void enterLocked() = 0;
virtual void enterUnlocked() = 0;
virtual void enterClosed() = 0;

顯然,此時生成的狀態(tài)機框架不能夠再被直接編譯了,我們必須從類DoorFSM派生出一個子類,并提供對這幾個純虛函數(shù)的具體實現(xiàn):

/*
* DoorFSMLogic.h
* 狀態(tài)機控制邏輯的頭文件
*/
#include "DoorFSM.h"

class DoorFSMLogic : public DoorFSM
{

protected:
virtual void enterOpened();
virtual void enterLocked();
virtual void enterUnlocked();
virtual void enterClosed();
};

正如前面所提到過的,這幾個函數(shù)實際上代表的正是應(yīng)用系統(tǒng)的處理邏輯,作為例子我們只是簡單地輸出一些提示信息:

/*
* DoorFSMLogic.cpp
* 狀態(tài)機控制邏輯的實現(xiàn)文件
*/
#include "DoorFSMLogic.h"
#include <iostream>

void DoorFSMLogic::enterOpened()
{
std::cout << "Enter Opened state." << std::endl;
}

void DoorFSMLogic::enterClosed()
{
std::cout << "Enter Closed state." << std::endl;
}

void DoorFSMLogic::enterLocked()
{
std::cout << "Enter Locked state." << std::endl;
}

void DoorFSMLogic::enterUnlocked()
{
std::cout << "Enter Unlocked state." << std::endl;
}

同樣,為了對生成的狀態(tài)機進行驗證,我們還需要手工編寫一段測試代碼:

/*
* TestFSM.cpp
* 測試狀態(tài)機邏輯
*/
#include "DoorFSMLogic.h"

int main()
{
DoorFSMLogic door;
door.A(DoorFSM::Close);
door.A(DoorFSM::Lock);
door.A(DoorFSM::Unlock);
door.A(DoorFSM::Open);
}

使用下面的命令能夠?qū)⑸傻臓顟B(tài)機框架和測試代碼編譯成一個可執(zhí)行文件:

[xiaowp@linuxgam code]$ g++ DoorFSM.cpp DoorFSMLogic.cpp TestLogic.cpp -o logic

運行結(jié)果如下所示:

[xiaowp@linuxgam code]$ ./logic
Enter Closed state.
Enter Locked state.
Enter Unlocked state.
Enter Opened state.

本文涉及代碼下載: http://www.uml.org.cn/umlcode/code.zip

四、小結(jié)

在面向?qū)ο蟮能浖到y(tǒng)中,有些對象具有非常復雜的生命周期模型,使用有限狀態(tài)機是描述這類對象最好的方法。作為一種軟件設(shè)計模式,有限狀態(tài)機的概念雖然不算復雜,實現(xiàn)起來也并不困難,但它的問題是當狀態(tài)機的模型復雜到一定的程度之后,會帶來實現(xiàn)和維護上的困難。Linux下的FSME是一個可視化的有限狀態(tài)機建模工具,而且支持狀態(tài)機框架代碼的自動生成,借助它可以更加輕松地構(gòu)建基于有限狀態(tài)機的應(yīng)用系統(tǒng)。

參考資料

  • 從Wiki百科全書 http://en.wikipedia.org/wiki/Finite_state_automaton開始,你可以了解到許多同狀態(tài)機相關(guān)的計算理論知識。

  • 狀態(tài)機是UML的一個重要組成部分,Robert C. Martin在他的文章UML Tutorial: Finite State Machines中,介紹了如何使用UML語言來對狀態(tài)機進行建模,你可以通過網(wǎng)址 http://www.objectmentor.com/resources/articles/umlfsm.pdf可以找到這一文檔。

  • FSME是Linux下一個基于Qt的狀態(tài)機建模工具,它能夠自動生成狀態(tài)機框架代碼,并且同時支持C++和Python語言,通過網(wǎng)站 http://fsme.sourceforge.net/你可以了解到有關(guān)FSME的更多信息,并能夠下載最新版本的FSME。

  • Qfsm也是一個運行在Linux下的狀態(tài)機建模工具,它不僅提供了可視化的狀態(tài)機編輯器,而且還能夠?qū)ι傻臓顟B(tài)機進行實時模擬,通過網(wǎng)站 http://qfsm.sourceforge.net/可以了解到Qfsm的更多信息。

往期精彩

編程修養(yǎng)(精品文,建議認真品讀并實踐)

使您的軟件運行起來: 防止緩沖區(qū)溢出(C語言精華帖)

談?wù)勛霎a(chǎn)品、做項目以及標準化相關(guān)的話題

分享一個自己量產(chǎn)項目上的集成測試軟件MTTEST

若覺得本次分享的文章對您有幫助,隨手點[在看]并轉(zhuǎn)發(fā)分享,也是對我的支持。

免責聲明:本文內(nèi)容由21ic獲得授權(quán)后發(fā)布,版權(quán)歸原作者所有,本平臺僅提供信息存儲服務(wù)。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯(lián)系我們,謝謝!

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉