日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > > 嵌入式微處理器
[導(dǎo)讀]相信ADC的應(yīng)用或多或少都會用到,在很多場合都有分辨率要求,要實現(xiàn)較高分辨率時,第一時間會想到采用一個較高位數(shù)的外置ADC去實現(xiàn)。可是,高分辨率外置ADC往往價格都不便宜,這就帶來一對矛盾: 高指標與低成本。其實,利用單片機片上的ADC利用過采樣技術(shù)就能很好的解決這樣一對矛盾體,本文來聊聊這個話題。

[導(dǎo)讀] 相信ADC的應(yīng)用或多或少都會用到,在很多場合都有分辨率要求,要實現(xiàn)較高分辨率時,第一時間會想到采用一個較高位數(shù)的外置ADC去實現(xiàn)。 可是高分辨率外置ADC往往價格都不便宜,這就帶來一對矛盾: 高指標與低成本。 其實利用單片機片上的ADC利用過采樣技術(shù)就能很好的解決這樣一對矛盾體,本文來聊聊這個話題。

什么是過采樣?

在信號處理中,過采樣是指以明顯高于奈奎斯特速率的采樣頻率對信號進行采樣。從理論上講,如果以奈奎斯特速率或更高的速率進行采樣,則可以完美地重建帶寬受限的信號。奈奎斯特頻率定義為信號帶寬的兩倍。過采樣能夠提高分辨率和信噪比SNR,并且通過放寬抗混疊濾波器的性能要求,有助于避免混疊和相位失真。

在很多項目應(yīng)用中,需要測量信號的動態(tài)范圍較大,且需要參數(shù)的微小變化。例如,ADC需要測量很大的溫度范圍(比如工業(yè)中甚至要求從-200℃~500℃),但仍要求系統(tǒng)對小于1度的變化做出響應(yīng)。常見的單片機片上ADC位數(shù)為12位,如要實現(xiàn)高于12位分辨率要怎么做呢?我們知道奈奎斯特-香農(nóng)采樣定理可知:

其中:

  • 為輸入待采樣信號最高頻率
  • 為奈奎斯特頻率。

如果實際采樣頻率高于奈奎斯特頻率 ,即為過采樣。那么低于奈奎斯特采樣頻率進行采樣就稱為欠采樣。

或許你會問,常規(guī)的應(yīng)用都是過采樣,怎么也沒見分辨率提高了呀?如果僅僅過采樣,要實現(xiàn)更高分辨率顯然是不夠的,那么要怎么利用過采樣實現(xiàn)更高的分辨率呢?要知道所采用的ADC硬件核分辨率是固定的,難道還會變不成?

過采樣提高分辨率

如果對一模擬信號,采用過采樣,然后再進行一定的軟件后處理,理論上是可以得到更高分辨率的。

為增加有效位數(shù)(ENOB :effective number of bits),對信號進行過采樣,所需的過采樣率可以由下面公式確定(省略理論推導(dǎo),過于枯燥):

其中:

  • 為過采樣頻率
  • 產(chǎn)品所需實際采樣頻率
  • W為額外所需增加的分辨率位數(shù)

假設(shè)系統(tǒng)使用12位ADC每100 ms輸出一次采樣值也即(10 Hz)。為了將測量的分辨率提高到16位,我們按公式計算過采樣頻率。


因此,如果我們以 f對信號進行過采樣,然后在所需的采樣周期內(nèi)收集足夠的樣本以對它們進行平均,現(xiàn)在可以將16位輸出數(shù)據(jù)用于16位測量。

具體怎么做呢?

  • 首先將256個連續(xù)采樣累加
  • 然后將總數(shù)除以16(或?qū)⒖倲?shù)右移4位)。該過程通常稱為抽取,也即將速率采樣。
  • 在類似進行下一次16位樣本處理

注意:用于累積過采樣數(shù)據(jù)并執(zhí)行除法抽取數(shù)據(jù)類型必須具有足夠的字節(jié)寬度,以防止溢出和截斷錯誤。比如這里累積和可以采樣32位無符號整型。

由上面公式可得出一個重要結(jié)論:每提高W位分辨率,需要提高采樣率 倍。

過采樣提高ADC的信噪比

ADC測量的SNR理論極限基于量化噪聲,這是基于在沒有過采樣和平滑濾波情況下模數(shù)轉(zhuǎn)換過程中固有的量化誤差所致。而量化誤差取決于ADC分辨率的位數(shù),其中N為ADC的位數(shù), 為參考電壓。

SNR理論情況下極限值的計算方式是數(shù)據(jù)轉(zhuǎn)換的有效位數(shù),如下所示:


這個公式?jīng)]必要去記,用到的時候參考計算一下即可。從公式中可看出,要提升一個模數(shù)轉(zhuǎn)換器的理論SNR的一種可行方案可以通過提升采樣位數(shù),但是需要注意的是這里的信噪比是度量模數(shù)轉(zhuǎn)換器本身的,就一個真實系統(tǒng)的信噪比還與整個信號鏈相關(guān)!

從上式中不難算出,12位ADC的理論SNR極限值為74dB,而通過過采樣提升4位分辨率后,其SNR理論極限提高至96 dB!

到底怎么實現(xiàn)呢?

這里以偽代碼的方式給出編程思路:

void init_adc(void) { /*配置ADC的采樣率為過采樣率連續(xù)中斷模式*/ } void start_adc(void) { /*控制ADC啟動采樣*/ } /*不同的開發(fā)平臺中斷函數(shù)寫法略有差異,比如51需要指定向量???*/ /*OVERSAMPLE_FACTOR=4^RSHIFT_BITS?下面兩個宏一起修改?*/ #define RSHIFT_BITS????????(4) #define OVERSAMPLE_FACTOR??(256) static unsigned short adc_result=0U; void adc_isr(void) { static unsigned short adc_index?=?OVERSAMPLE_FACTOR; static unsigned int accumulator?= 0U; /*ADC_REG?ADC轉(zhuǎn)換結(jié)果寄存器,不同平臺名稱不同*/ accumulator?+=?ADC_REG;?
????adc_index--; if(?adc_index==0 )
????{ /*?加和按因子抽取?*/ adc_result??=?accumulator>>RSHIFT_BITS;
????????accumulator?= 0;
????????adc_index???=?OVERSAMPLE_FACTOR;
????}
}

該方案有一個缺陷,就是每次ADC中斷都需要CPU參與,在過采樣率很高的情況下,上述方案消耗很多CPU資源,那么如果單片機內(nèi)存資源足夠的情況下可以考慮采用DMA模式,采集很多數(shù)據(jù)并將數(shù)據(jù)暫存下來,然后再做累加平均抽取。這是空間換時間的策略的體現(xiàn)。這個編代碼也很容易,只需要申請一片內(nèi)存區(qū),內(nèi)存區(qū)的大小可以定為256的倍數(shù),這是因為在提升4位分辨率情況下,一個16位的輸出樣本需要256個12位樣本。

總結(jié)一下

在成本受限的情況下,可以通過單片機片內(nèi)ADC過采樣以及累積抽取的技術(shù)來提升采樣分辨率,這種技術(shù)的特點:

  • 可以使用過采樣和平均來提高測量分辨率,而無需增加昂貴的片外ADC。
  • 過采樣和加和抽取將以提高CPU利用率和降低吞吐量為代價來提高SNR和測量分辨率。
  • 過采樣和加和抽取可以改善白噪聲的信噪比。

-END-


來源 | 嵌入式客棧

作者 | 逸珺


|?整理文章為傳播相關(guān)技術(shù),版權(quán)歸原作者所有 |

| 如有侵權(quán),請聯(lián)系刪除 |


【1】嵌入式研發(fā)10多年,工程師悟出這些道理

【2】當談起嵌入式工程師,究竟在談些什么

【3】嵌入式工程師出路之我見:就業(yè),技術(shù),行業(yè)...

【4】為什么嵌入式工程師會對8位MCU有誤解?

【5】嵌入式工程師結(jié)合經(jīng)歷聊硬件工程師和軟件工程師哪個更有前途?


免責聲明:本文內(nèi)容由21ic獲得授權(quán)后發(fā)布,版權(quán)歸原作者所有,本平臺僅提供信息存儲服務(wù)。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯(lián)系我們,謝謝!

嵌入式ARM

掃描二維碼,關(guān)注更多精彩內(nèi)容

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉