日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > > 電源系統(tǒng)設(shè)計
[導(dǎo)讀]很多朋友覺得PID是遙不可及,很神秘,很高大上的一種控制,對其控制原理也很模糊,只知曉概念性的層面,知其然不知其所以然,那么本文從另類視角來探究微分、積分電路的本質(zhì),意在幫助理解PID的控制原理。


很多朋友覺得PID是遙不可及,很神秘,很高大上的一種控制,對其控制原理也很模糊,只知曉概念性的層面,知其然不知其所以然,那么本文從另類視角來探究微分、積分電路的本質(zhì),意在幫助理解PID的控制原理。

(PID:P表示比例控制;I表示積分控制;D表示微分控制)

在認清微分、積分電路之前,我們都知道電容的特性:電容的電流超前電壓相位90°,很多教材都這么描述,讓人很費解,其本質(zhì)又是什么呢?

電容的本質(zhì)
要徹底掌握微分、積分電路或PID控制思路,首先得了解電容。

電容就是裝載電荷的容器,從微觀角度看,當(dāng)電荷流入容器時,隨著時間的變化極間電場逐漸增大。

以圖1為例:

  1. 充電開始時Uc=0V,壓差△U=Ur=Ui,此刻容器內(nèi)無電荷,也就無電場排斥流入的電荷;所以電流Ic最大,表現(xiàn)為容抗最小,近似短路;

  2. 當(dāng)Uc上升,壓差△U開始減小,該過程形成電場,容器開始排斥流入的電荷;電流Ic逐漸減小,表現(xiàn)為容抗逐漸增大;

  3. 當(dāng)Uc=Ui,壓差△U=Ur=0V,此刻容器內(nèi)電場最強,以最大排斥力阻止流入的電荷;電流Ic=0,表現(xiàn)為容抗最大,近似開路。

圖1 電容容器充電模型

當(dāng)電荷流出容器時,隨著時間的變化極間電場逐漸減?。辉摲烹娺^程的電容可看成是一個內(nèi)阻為0的電壓源,以圖2為例(移除電源并接地):

  1. 放電開始時Uc=Ui,此刻容器內(nèi)充滿電荷,因此電場最強,而電阻不變,則放電電流Ic最大(方向與充電相反),電阻兩端的電壓Ur=Uc,則Ur=Ui;

  2. 當(dāng)Uc下降,該過程電場減弱,放電電流Ic逐漸減小,Ur=Uc也逐漸減??;

  3. 放電耗盡Uc=0V,此刻容器內(nèi)無電荷,因此無電場,Ur=0V。

圖2 電容容器放電模型

電容就好比水桶一樣,流入的水流無論是大還是小,水位的變化一定是從最低位開始連續(xù)上升的;而電容內(nèi)的電荷也是逐漸從0開始積累起來的,積累過程與自然常數(shù)e有關(guān)系,這里就不深入討論了。

圖3就是電容充放電的電壓-電流曲線。

圖3 電容充放電,電壓-電流曲線

聯(lián)系前面的分析,可總結(jié)為:

  • 電容電壓不能突變,電流可突變(教材的定義是電容的電流與電壓的變化率成正比);

  • 充電過程中的電容可等效成一個可變電阻,放電過程中的電容可等效成一個電壓源;

  • 電容電流反映的是單位時間內(nèi)流動的電荷量,電容電壓(或電場)反映的是電荷量的多少。通俗的理解就是流動的電荷才會導(dǎo)致電荷量多少的變化(與①相吻合);用數(shù)學(xué)語言描述則是電容的電流超前電壓相位90°;

  • 電容充放電速度與電容和電阻大小有關(guān)。

微分電路&積分電路
對電容充分了解之后,首先我們先來認識最簡單的分壓電路,如圖4根據(jù)歐姆定律VCC=2.5V,該純阻性的分壓電路就是比例運算電路的雛形。

圖4 分壓電路

如圖5,我們把R2換成104(0.1μF)電容,C1電容充滿電后近似開路,VCC=5V;該電路就是積分運算電路的雛形。那么把5V改成信號源就構(gòu)成了低通濾波電路。

圖5 積分電路

如圖6為上圖的充電波形,紅色表示5V的波形,藍色表示VCC的波形,因為電容充電時的容抗由小變大直至開路,所以分壓VCC也由小變大直至為5V。而且電容充電需要一定的時間,導(dǎo)致VCC的波形要緩一些。(該5V是開關(guān)電源上電軟啟動時的輸出波形)

圖6 積分電路波形

把圖4圖5組合就得到圖7的電路,這就是我們經(jīng)常使用的PI電路(比例積分),在參考電壓或分壓電路里很常見,加電容的目的就是增加延時性,穩(wěn)定VCC的電壓不受5V波動而波動,VCC=2.5V。

圖7 PI電路

把圖5中電容和電阻的位置交換一下得到如圖8的電路,C1電容充滿電后近似開路,VCC=0V;該電路就是微分運算電路的雛形。那么把5V改成信號源就構(gòu)成了高通濾波電路。

圖8 微分電路

如圖9為上圖的充電波形,紅色表示5V的波形,藍色表示VCC的波形,因為電容充電時的容抗由小變大直至開路,所以分壓VCC由大變小直至為0V。也就是紅色波形從0開始跳變一瞬間,VCC已經(jīng)是最大值,所以微分有超前預(yù)判的性質(zhì)(反映的是輸入信號的變化率)。

圖9 微分電路波形

如圖10為(反相)比例運算電路。

圖10 比例運算電路

如圖11,Uo與Ui成線性關(guān)系。

圖11 比例運算電路波形

如圖12、圖13為微分運算電路的充放電過程:

充電過程的電容C1可等效成一個可變電阻,C1開始充電時的容抗為0,電壓不可突變則電壓為0,運放-輸入端得到的分壓為正最大峰值,于是Uo為運放的負最大峰值,隨著電容充滿電,U0逐漸變?yōu)?。

圖12 微分運算電路-充電

放電過程的電容C1可等效成一個電壓源,且電壓不可突變,此時電流反向為最大值,R1電壓瞬間反向也為最大值,運放-輸入端得到的分壓則為負最大峰值,于是Uo為運放的正最大峰值,隨著電容放完電,U0逐漸變?yōu)?。

圖13 微分運算電路-放電

如圖14為微分運算電路的輸入輸出波形,聯(lián)系前面的分析結(jié)果,則Uo反映的是Ui的變化率,這樣就達到了預(yù)判超前的效果。

圖14 微分運算電路波形

如圖15為微分運算仿真電路,為了防止運放出現(xiàn)飽和,必須限制輸入電流,實際使用時需要在電容C1輸入端串聯(lián)一個小電阻R2。串聯(lián)電阻后的電路已經(jīng)不是理想微分運算電路了,但是只要輸入信號周期大于2倍RC常數(shù),可以近似為微分運算電路。

圖15 微分運算仿真電路

如圖16為微分運算仿真電路波形,其中IN-為運放-輸入端的波形。

圖16 微分運算仿真電路波形

如圖17、圖18為積分運算電路的充放電過程:

充電過程的電容C1可等效成一個可變電阻,C1開始充電時的容抗為0,電壓不可突變則電壓為0,運放-輸入端得到的分壓為0,于是Uo為0,隨著電容充滿電,運放-輸入端得到的分壓為正最大值,U0為運放的負最大峰值。

圖15 積分運算電路-充電

放電過程的電容C1可等效成一個電壓源,且電壓不可突變,運放-輸入端得到的分壓也不可突變,隨著電容放完電,于是Uo由負最大峰值逐漸變?yōu)?。

圖16 積分運算電路-放電

如圖17為積分運算電路的輸入輸出波形,聯(lián)系前面的分析結(jié)果,則Uo反映的是Ui的積累過程,這樣就達到了延遲穩(wěn)定的效果。

圖17 積分運算電路波形

如圖18為積分運算仿真電路,為了防止運放出現(xiàn)飽和,實際使用時需要在電容C2兩端并聯(lián)一個電阻R3。并聯(lián)電阻后的電路已經(jīng)不是理想積分運算電路了,但是只要輸入信號周期大于2倍RC常數(shù),可以近似為積分運算電路。

圖18 積分運算仿真電路

如圖19為積分運算仿真電路波形,其中IN-為運放-輸入端的波形。

圖19 積分運算仿真電路波形

要點:

  • 微分、積分運算電路利用了電容充放電時其電壓不可突變的特性達到調(diào)節(jié)輸出的目的,對變化的輸入信號有意義;

  • 微分D控制有超前預(yù)判的特性,積分I控制有延遲穩(wěn)定的特性,在PID調(diào)節(jié)速度上,微分D控制>比例P控制>積分I控制。


END

來源:電鹵藥丸

免責(zé)聲明:本文內(nèi)容由21ic獲得授權(quán)后發(fā)布,版權(quán)歸原作者所有,本平臺僅提供信息存儲服務(wù)。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯(lián)系我們,謝謝!

電源系統(tǒng)設(shè)計

掃描二維碼,關(guān)注更多精彩內(nèi)容

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉