摘要: 本文對(duì)多層感知器和反向傳播進(jìn)行入門級(jí)的介紹。 人工神經(jīng)網(wǎng)絡(luò)是一種計(jì)算模型,啟發(fā)自人類大腦處理信息的生物神經(jīng)網(wǎng)絡(luò)。 人工神經(jīng)網(wǎng)絡(luò)是一種計(jì)算模型,啟發(fā)自人類大腦處理信息的生物神經(jīng)網(wǎng)絡(luò)
本文是對(duì)卷積神經(jīng)網(wǎng)絡(luò)的基礎(chǔ)進(jìn)行介紹,主要內(nèi)容包括卷積神經(jīng)網(wǎng)絡(luò)概念、卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)、卷積神經(jīng)網(wǎng)絡(luò)求解、卷積神經(jīng)網(wǎng)絡(luò)LeNet-5結(jié)構(gòu)分析、卷積神經(jīng)網(wǎng)絡(luò)注意事項(xiàng)。 一、卷積神經(jīng)網(wǎng)絡(luò)概念
1. 人臉檢測(cè) “人臉檢測(cè)(Face DetecTIon)”是檢測(cè)出圖像中人臉?biāo)谖恢玫囊豁?xiàng)技術(shù)。 人臉檢測(cè)算法的輸入是一張圖片,輸出是人臉框坐標(biāo)序列(0
CNN是目前自然語(yǔ)言處理中和RNN并駕齊驅(qū)的兩種最常見的深度學(xué)習(xí)模型。圖1展示了在NLP任務(wù)中使用CNN模型的典型網(wǎng)絡(luò)結(jié)構(gòu)。一般而言,輸入的字或者詞用Word Embedding的方式表達(dá),這樣
嚴(yán)格來(lái)說(shuō)不是在講Python而是講在Python下使用OpenCV。本篇將介紹和深度學(xué)習(xí)數(shù)據(jù)處理階段最相關(guān)的基礎(chǔ)使用,并完成4個(gè)有趣實(shí)用的小例子: - 延時(shí)攝影小程序 - 視頻中截屏
引言和數(shù)據(jù) 歡迎閱讀 Python 機(jī)器學(xué)習(xí)系列教程的回歸部分。這里,你應(yīng)該已經(jīng)安裝了 Scikit-Learn。如果沒有,安裝它,以及 Pandas 和 Matplotlib。
應(yīng)該掌握哪門編程語(yǔ)言,才能獲得機(jī)器學(xué)習(xí)或數(shù)據(jù)科學(xué)的工作機(jī)會(huì)呢?這是一個(gè)銀彈的問(wèn)題。許多論壇都在辯論這個(gè)問(wèn)題。我會(huì)在本文中提供自己的答案,并解釋原因,但是我們要先來(lái)查看一些數(shù)據(jù)。畢竟,機(jī)器學(xué)習(xí)和數(shù)
開源的深度學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)正步入成熟,而現(xiàn)在有許多框架具備為個(gè)性化方案提供先進(jìn)的機(jī)器學(xué)習(xí)和人工智能的能力。那么如何決定哪個(gè)開源框架最適合你呢?本文試圖通過(guò)對(duì)比深度學(xué)習(xí)各大框架的優(yōu)缺點(diǎn),從而為各位讀者
訓(xùn)練專項(xiàng)網(wǎng)絡(luò) 還記得我們?cè)陂_始時(shí)丟棄的70%的培訓(xùn)數(shù)據(jù)嗎?結(jié)果表明,如果我們想在Kaggle排行榜上獲得一個(gè)有競(jìng)爭(zhēng)力的得分,這是一個(gè)很糟糕的主意。在70%的數(shù)據(jù)和挑戰(zhàn)的測(cè)試集中,我們的模
上一次我們用了單隱層的神經(jīng)網(wǎng)絡(luò),效果還可以改善,這一次就使用CNN。 卷積神經(jīng)網(wǎng)絡(luò) 上圖演示了卷積操作 LeNet-5式的卷積神經(jīng)網(wǎng)絡(luò),是計(jì)算機(jī)視覺領(lǐng)域近期取得
Pybrain號(hào)稱最好用的Python神經(jīng)網(wǎng)絡(luò)庫(kù)。其實(shí)Scikit-Learn號(hào)稱Python上最好用的機(jī)器學(xué)習(xí)庫(kù),但是它偏偏就沒有神經(jīng)網(wǎng)絡(luò)這塊,所以就與我無(wú)緣了。 之前也看過(guò)一些提到N
Google近日發(fā)布了TensorFlow 1.0候選版,這第一個(gè)穩(wěn)定版將是深度學(xué)習(xí)框架發(fā)展中的里程碑的一步。自TensorFlow于2015年底正式開源,距今已有一年多,這期間TensorFl
Pybrain號(hào)稱最好用的Python神經(jīng)網(wǎng)絡(luò)庫(kù)。其實(shí)Scikit-Learn號(hào)稱Python上最好用的機(jī)器學(xué)習(xí)庫(kù),但是它偏偏就沒有神經(jīng)網(wǎng)絡(luò)這塊,所以就與我無(wú)緣了。 之前也看過(guò)一些提到N
摘要:本文展示了如何基于nolearn使用一些卷積層和池化層來(lái)建立一個(gè)簡(jiǎn)單的ConvNet體系結(jié)構(gòu),以及如何使用ConvNet去訓(xùn)練一個(gè)特征提取器,然后在使用如SVM、LogisTIc回歸等不同
18713271819cxy
Robin2020
One大春
rosedays
Yoyo游春燕
niaide
liqinglong1023
Bobbyxzh