在當(dāng)今電子設(shè)備快速發(fā)展的時(shí)代,充電技術(shù)成為了人們關(guān)注的焦點(diǎn)。高壓大電流直充和快充協(xié)議充電是兩種常見的充電方式,它們?cè)诔潆娫怼⒃O(shè)備要求、充電速度、安全性以及對(duì)電池壽命的影響等方面存在著顯著的區(qū)別。
在現(xiàn)代電子設(shè)備中,鋰電池作為一種高效、便攜的能源存儲(chǔ)解決方案得到了廣泛應(yīng)用。然而,鋰電池在使用過程中面臨著諸多潛在風(fēng)險(xiǎn),如過流和短路情況,這可能導(dǎo)致電池過熱、損壞甚至引發(fā)安全事故。鋰電池保護(hù)芯片應(yīng)運(yùn)而生,其對(duì)于過流電流和短路電流的監(jiān)測(cè)與控制能力成為保障鋰電池安全穩(wěn)定運(yùn)行的關(guān)鍵因素。
本文深入探討了反激式開關(guān)電源中次級(jí)整流二極管過熱的問題。首先介紹了反激式開關(guān)電源的工作原理以及次級(jí)整流二極管在其中的作用,詳細(xì)分析了導(dǎo)致二極管過熱的多種因素,包括二極管選型不當(dāng)、電流過大、散熱不良、反向恢復(fù)特性不佳以及電路設(shè)計(jì)不合理等。針對(duì)這些問題,提出了相應(yīng)的解決措施,如合理選型、優(yōu)化電路設(shè)計(jì)、加強(qiáng)散熱管理等,并結(jié)合實(shí)際案例進(jìn)行了說明,旨在為電子工程師解決這一常見問題提供全面的理論與實(shí)踐指導(dǎo)。
本文深入探討了開關(guān)電源并聯(lián)輸出電感嘯叫問題。首先介紹了開關(guān)電源的基本工作原理以及電感在其中的作用,詳細(xì)分析了導(dǎo)致電感嘯叫的多種因素,包括電感飽和、電流紋波、開關(guān)頻率及其諧波、機(jī)械共振等,并結(jié)合理論與實(shí)際應(yīng)用,提出了一系列有效的解決措施,旨在為電子工程師解決這一常見問題提供全面的指導(dǎo)和參考。
在電力電子領(lǐng)域,拓?fù)浣Y(jié)構(gòu)的選擇對(duì)于電源系統(tǒng)的性能和效率至關(guān)重要。LCC(電感電容耦合諧振變換器)和 LLC(電感電容電感諧振變換器)是兩種常見的拓?fù)浣Y(jié)構(gòu),它們?cè)谠S多應(yīng)用場(chǎng)景中展現(xiàn)出獨(dú)特的優(yōu)勢(shì)。隨著高壓應(yīng)用需求的不斷增長(zhǎng),深入了解這兩種拓?fù)浣Y(jié)構(gòu)的特點(diǎn)和區(qū)別,對(duì)于選擇合適的拓?fù)湟詫?shí)現(xiàn)高效、穩(wěn)定的高壓電源系統(tǒng)具有重要意義。
隨著可再生能源和電力電子技術(shù)的發(fā)展,單相逆變器在光伏發(fā)電、風(fēng)能發(fā)電、儲(chǔ)能系統(tǒng)等應(yīng)用中發(fā)揮著不可或缺的作用。逆變器的主要功能是將直流電源(如光伏電池板)轉(zhuǎn)換為交流電源,以便供給家庭或電網(wǎng)使用。在這個(gè)過程中,調(diào)制方法的選擇對(duì)逆變器的效率具有顯著影響。本文將深入探討單相逆變器的調(diào)制方法,并重點(diǎn)分析何種調(diào)制方法可以達(dá)到最高效率。
隨著移動(dòng)設(shè)備的普及和快速發(fā)展,對(duì)充電速度的要求越來越高??斐浼夹g(shù)不斷演進(jìn),其中 PD(功率傳輸協(xié)議)快充成為主流。在 PD 快充系統(tǒng)中,VBUS(電壓總線) MOS 管起著關(guān)鍵作用。它不僅影響著充電的效率和安全性,還對(duì)整個(gè)系統(tǒng)的性能有著重要影響。
在電子電路中,變壓器降壓后整流是常見的電源處理方式。電解電容在其中起著關(guān)鍵作用,其值的選擇直接影響到電源的穩(wěn)定性、紋波大小以及電路的性能。合理選擇電解電容值對(duì)于確保電路正常運(yùn)行至關(guān)重要。
推挽升壓電路在各種電子設(shè)備中廣泛應(yīng)用,它能夠?qū)⑤斎氲闹绷麟妷恨D(zhuǎn)換為較高的直流電壓。然而,在實(shí)際運(yùn)行過程中,MOS 管發(fā)熱嚴(yán)重的問題常常困擾著工程師們。這不僅影響電路的性能和穩(wěn)定性,還可能導(dǎo)致設(shè)備故障。因此,深入分析 MOS 管發(fā)熱的原因具有重要意義。
傳導(dǎo)輻射干擾(Conducted Emission Interference)是現(xiàn)代電子設(shè)備在工作過程中普遍面臨的一種干擾現(xiàn)象。它是指電磁噪聲通過電源線或信號(hào)線等導(dǎo)體傳播,從而影響其他設(shè)備的性能和穩(wěn)定性。隨著電子設(shè)備的廣泛應(yīng)用,尤其是無線通信、自動(dòng)化控制和智能家居等領(lǐng)域,如何有效降低傳導(dǎo)輻射干擾,成為了設(shè)計(jì)工程師和技術(shù)人員需要面對(duì)的重要挑戰(zhàn)。本文將介紹一些實(shí)用的小技巧,以幫助有效降低傳導(dǎo)輻射干擾。
在 CMOS 和寬帶隙半導(dǎo)體技術(shù)的進(jìn)步中,您很容易忘記 William Shockley 于 1949 年發(fā)明的第一個(gè)晶體管是雙極結(jié)型晶體管 (BJT)。盡管它們已經(jīng)不再流行,但這些不起眼的設(shè)備仍然在各種類型的電子設(shè)備中大量高效可靠地運(yùn)行。事實(shí)上,在某些應(yīng)用中,BJT 的性能可以超越更杰出的 CMOS 同類產(chǎn)品。 BJT 技術(shù)的最新改進(jìn)將使它們成為半導(dǎo)體技術(shù)領(lǐng)域的重要組成部分。
反激式轉(zhuǎn)換器具有眾多優(yōu)點(diǎn),包括成本最低的隔離式電源轉(zhuǎn)換器、輕松提供多個(gè)輸出電壓、簡(jiǎn)單的初級(jí)側(cè)控制器以及高達(dá) 300W 的功率傳輸。反激式轉(zhuǎn)換器用于許多離線應(yīng)用,從電視到手機(jī)充電器以及電信和工業(yè)應(yīng)用。它們的基本操作可能看起來令人生畏,而且設(shè)計(jì)選擇很多,特別是對(duì)于那些以前沒有設(shè)計(jì)過的人來說。讓我們看看 53 VDC 至 12V、5A 連續(xù)導(dǎo)通模式 (CCM) 反激式的一些關(guān)鍵設(shè)計(jì)注意事項(xiàng)。
英飛凌的單片雙向 GaN HEMT 基于其 CoolGaN 技術(shù),代表了電力電子領(lǐng)域的一項(xiàng)非凡創(chuàng)新,特別是在實(shí)現(xiàn)單級(jí)功率轉(zhuǎn)換方面。這些 BDS 有助于開發(fā)具有更少組件、更低成本和簡(jiǎn)化設(shè)計(jì)的轉(zhuǎn)換器,與傳統(tǒng)兩級(jí)方法相比具有顯著優(yōu)勢(shì)。
氮化鎵(GaN)基功率半導(dǎo)體在功率轉(zhuǎn)換方面具有許多優(yōu)勢(shì)。它們?cè)谠S多應(yīng)用中的使用不斷增加,例如移動(dòng)設(shè)備的電源適配器和數(shù)據(jù)中心的電源。橫向高電子遷移率晶體管 (HEMT) 是應(yīng)用最廣泛的 GaN 器件。該器件的退化機(jī)制已被廣泛研究并被納入可靠性測(cè)試標(biāo)準(zhǔn)。
碳化硅 (SiC) MOSFET 因其技術(shù)固有的特性(例如高電壓能力、較低的導(dǎo)通電阻、耐高溫操作以及相對(duì)于硅更高的功率密度)而越來越受到電源系統(tǒng)設(shè)計(jì)人員的歡迎。因此,基于 SiC 的轉(zhuǎn)換器和逆變器是電池供電車輛 (BEV)、可再生能源以及需要最高效率的所有其他應(yīng)用的最佳選擇。
Verilog12
wh1988
caomuxiaozi
yyffwasd
JLnny
18713271819cxy
rainbow9527
王洪陽
wxy1198
yifeidengdai
小愛電源
hsj1998
hugewinner
zrddyhm
越陌度遷
hefei12
BOB50842221
佳木秀
709051457
llaaqqq
大流士云
TysonZheng
影子念
sailqihang
xyhaliyou
感應(yīng)加熱技術(shù)
13827430715
Powerxys
zjgaojian
gaojian19961214