在當(dāng)今的能源領(lǐng)域,鋰離子電池憑借其高能量密度、長循環(huán)壽命等優(yōu)勢,廣泛應(yīng)用于電動汽車、儲能系統(tǒng)等多個關(guān)鍵領(lǐng)域。然而,由多個鋰離子電池構(gòu)成的電池組存在熱擊穿的風(fēng)險,這猶如一顆隱藏的 “定時炸彈”,給相關(guān)應(yīng)用帶來了嚴(yán)重的安全威脅。
在電子制造領(lǐng)域,焊接質(zhì)量對于產(chǎn)品的穩(wěn)定性和可靠性起著決定性作用。虛焊作為一種常見且棘手的焊接缺陷,可能引發(fā)電子產(chǎn)品故障,嚴(yán)重時甚至導(dǎo)致產(chǎn)品失效。通孔焊接和標(biāo)貼焊接作為兩種主流的焊接方式,在應(yīng)對虛焊問題上各有特點(diǎn),而通孔焊接憑借其獨(dú)特的工藝特性,在解決虛焊問題方面展現(xiàn)出顯著優(yōu)勢。
在高速電路設(shè)計領(lǐng)域,差分信號傳輸以其卓越的抗干擾能力、對 EMI 的有效抑制以及精準(zhǔn)的時序定位,成為保障信號穩(wěn)定可靠傳輸?shù)年P(guān)鍵技術(shù)手段。隨著電子設(shè)備不斷朝著小型化、高性能化方向發(fā)展,PCB(Printed Circuit Board,印刷電路板)設(shè)計面臨著愈發(fā)嚴(yán)苛的挑戰(zhàn),其中差分對 AC Cap(交流耦合電容)阻抗不連續(xù)問題尤為突出,而挖地平面作為一種常用的解決策略,其相關(guān)探討具有重要的實際意義。
在現(xiàn)代電子產(chǎn)品中,普通整流橋被廣泛應(yīng)用于 AC/DC 轉(zhuǎn)換電路中,如電源適配器、LED 驅(qū)動、電動工具及家電控制板等。特別是在中高電流應(yīng)用中,合理的 PCB 布局不僅能提升整流橋的散熱效率,還能增強(qiáng)系統(tǒng)的可靠性與壽命。本文將從 PCB 散熱路徑設(shè)計的角度,系統(tǒng)性分析普通整流橋的布局優(yōu)化策略。
在電動汽車發(fā)展的進(jìn)程中,充電效率始終是影響其普及的關(guān)鍵因素。通過簡單公式可知,功率越大,充電時間越短。三相電源所能提供的功率最高可達(dá)單相電源的 3 倍,這為提升充電功率提供了一條可行路徑。而三相 PFC(功率因數(shù)校正)轉(zhuǎn)換器在其中扮演著極為重要的角色。
在科幻電影中,我們常??吹竭@樣的場景:城市上空,飛行器如靈動的鳥兒般穿梭,人們乘坐它們快速抵達(dá)目的地,輕松避開擁堵的地面交通。如今,隨著科技的飛速發(fā)展,這一場景正逐漸從銀幕走向現(xiàn)實,而電動垂直起降飛行器(eVTOL),正是開啟城市空中交通新時代的 “鑰匙”。
在電子電路中,電磁干擾按電流流動模式可分為共模干擾與差模干擾。共模干擾是指兩條信號線上的干擾電流以相同方向同時流動,并通過地線形成回路,其本質(zhì)是信號線與地線之間的電位差波動。例如,當(dāng)開關(guān)電源的功率器件開關(guān)動作時,產(chǎn)生的高頻噪聲會以共模電流的形式通過電源線向大地輻射。而差模干擾則是兩條信號線上的干擾電流方向相反,僅在兩條信號線之間流動,相當(dāng)于信號線之間的電壓波動,常見于數(shù)據(jù)線傳輸過程中因外界電磁耦合產(chǎn)生的信號畸變。
光耦隔離:經(jīng)典且應(yīng)用廣泛光耦隔離利用光耦合器實現(xiàn)信號隔離與傳輸,其核心組件為發(fā)光二極管和光敏元件。輸入信號使發(fā)光二極管發(fā)光,光敏元件接收光信號后產(chǎn)生電信號,完成信號傳輸,同時實現(xiàn)輸入與輸出的電氣隔離。光耦隔離在 CAN 總線隔離模塊中應(yīng)用廣泛,具有隔離電壓高、效果好、抗干擾能力強(qiáng)等優(yōu)點(diǎn)。以高速光耦 6N137 為例,其傳輸延遲時間短,典型值僅 48ns,接近 TTL 電路傳輸延遲水平,能滿足 CAN 總線通信速率要求。在一些對成本較為敏感、通信速率要求不高的場合,光耦隔離可有效降低成本,確保系統(tǒng)基本穩(wěn)定性。但光耦隔離也存在響應(yīng)速度相對較慢的缺點(diǎn),不適用于對實時性要求極高的高速通信場景,傳輸延遲可能影響數(shù)據(jù)實時性。
在電子電路系統(tǒng)中,整流電路起著將交流電轉(zhuǎn)換為直流電的關(guān)鍵作用。而穩(wěn)壓輸出則是確保負(fù)載能夠獲得穩(wěn)定電壓供應(yīng)的重要環(huán)節(jié)。然而,當(dāng)整流電路穩(wěn)壓輸出帶不起負(fù)載時,整個電子設(shè)備可能會出現(xiàn)各種異常情況,甚至無法正常工作。深入分析這一問題對于保障電子設(shè)備的穩(wěn)定運(yùn)行具有至關(guān)重要的意義。
在下述的內(nèi)容中,小編將會對毫米波雷達(dá)的相關(guān)消息予以報道,如果毫米波雷達(dá)是您想要了解的焦點(diǎn)之一,不妨和小編共同閱讀這篇文章哦。
在現(xiàn)代電氣與電子設(shè)備的運(yùn)行中,浪涌保護(hù)器(Surge Protective Device,SPD)扮演著至關(guān)重要的角色,它如同忠誠的衛(wèi)士,時刻守護(hù)著各類設(shè)備免受瞬態(tài)過電壓的侵害。隨著科技的不斷進(jìn)步,Deepseek 這類先進(jìn)的技術(shù)分析工具,為我們深入理解浪涌保護(hù)器提供了全新的視角與維度。
在電子設(shè)備的保護(hù)領(lǐng)域,雙向 TVS 管(瞬態(tài)電壓抑制二極管)發(fā)揮著至關(guān)重要的作用,能有效抵御瞬態(tài)過電壓對電路的損害。雙向 TVS 管根據(jù)內(nèi)部結(jié)構(gòu)的不同,可分為共陰和共陽兩種類型,它們在諸多方面存在顯著差異。深入了解這些區(qū)別,對于電子工程師在電路設(shè)計中準(zhǔn)確選型、合理應(yīng)用雙向 TVS 管,提高電路的可靠性和穩(wěn)定性具有重要意義。
工業(yè)4.0與自動駕駛技術(shù)深度融合,ISO 26262功能安全標(biāo)準(zhǔn)已成為保障汽車電子系統(tǒng)可靠性的核心框架。數(shù)字孿生技術(shù)通過構(gòu)建物理系統(tǒng)的虛擬鏡像,為功能安全驗證提供了從故障注入到安全完整性等級(ASIL)評估的全流程解決方案,使企業(yè)能夠在虛擬環(huán)境中提前識別并解決潛在的安全風(fēng)險,將認(rèn)證周期縮短40%以上,同時降低測試成本達(dá)60%。
網(wǎng)絡(luò)攻擊已從傳統(tǒng)IT系統(tǒng)滲透至生產(chǎn)控制層,工業(yè)網(wǎng)絡(luò)入侵檢測成為保障生產(chǎn)連續(xù)性的核心防線。基于AI的入侵檢測技術(shù)通過流量特征分析與深度包檢測(DPI)的融合,實現(xiàn)了從行為模式識別到協(xié)議內(nèi)容解析的雙重防護(hù),但誤報問題始終是制約其大規(guī)模應(yīng)用的關(guān)鍵瓶頸。本文將從技術(shù)架構(gòu)、誤報成因及優(yōu)化策略三個維度,解析AI驅(qū)動的工業(yè)網(wǎng)絡(luò)入侵檢測體系。
在精密運(yùn)動控制領(lǐng)域,旋轉(zhuǎn)運(yùn)動向直線運(yùn)動的轉(zhuǎn)換始終是核心挑戰(zhàn)。傳統(tǒng)機(jī)械傳動方案受限于間隙、摩擦與響應(yīng)延遲,難以滿足超精密制造與高速動態(tài)場景的需求。凸輪機(jī)構(gòu)與直線電機(jī)的“混血”設(shè)計,通過融合機(jī)械傳動的高剛性與電磁驅(qū)動的靈活性,開辟了運(yùn)動轉(zhuǎn)換的新范式。這種創(chuàng)新不僅重構(gòu)了運(yùn)動轉(zhuǎn)換的物理架構(gòu),更催生出兼具高精度、高動態(tài)與高可靠性的新型驅(qū)動系統(tǒng)。