當(dāng)我們負(fù)責(zé)一個(gè)位于我們舒適區(qū)之外的項(xiàng)目時(shí),我們都曾經(jīng)歷過一次或一次。對(duì)我來(lái)說,當(dāng)我的老板讓我設(shè)計(jì)高速板時(shí),那一天就來(lái)了。雖然我認(rèn)為自己是一位經(jīng)驗(yàn)豐富的電路設(shè)計(jì)師,但我知道高速 PCB 設(shè)計(jì)有許多限制,這些限制是您在設(shè)計(jì)普通電路時(shí)通常不會(huì)遇到的。最初,我花時(shí)間制作適用于高速設(shè)計(jì)的原理圖;然而,一旦完成,我就完全專注于了解我是否應(yīng)該為我的高速PCB 原型使用 FR-4 或更專業(yè)的材料. 在深入了解我所學(xué)的知識(shí)之前,重要的是要知道我在本文中將“高速”指的是大于 50 MHz 的任何東西。這些是您在該頻率范圍內(nèi)工作時(shí)應(yīng)注意的材料注意事項(xiàng)。
本應(yīng)用說明適用于具有 PCB 設(shè)計(jì)基礎(chǔ)知識(shí)以改進(jìn) EMC 的硬件和/或 PCB 設(shè)計(jì)人員?;旧辖忉屃舜蠖鄶?shù)設(shè)計(jì)規(guī)則的背景,但詳細(xì)解釋會(huì)使應(yīng)用筆記的結(jié)構(gòu)超載。市場(chǎng)上有大量關(guān)于 EMC、屏蔽、布線等系統(tǒng)設(shè)計(jì)的文獻(xiàn)。因此,EMC 的這些方面在這里只涉及很少的部分。本應(yīng)用說明針對(duì) NEC 微控制器附近 PCB 設(shè)計(jì)的詳細(xì)方面。
本文將介紹一種用于 3.3kV SiC MOSFET的基于變壓器的隔離式柵極驅(qū)動(dòng)器。兩個(gè) VHF 調(diào)制諧振反激式轉(zhuǎn)換器,工作頻率為 20 MHz,可生成 PWM 信號(hào)和柵極驅(qū)動(dòng)功率。
我有一個(gè)朋友喜歡世界各地的最新技術(shù)。帶著對(duì) 3D 打印機(jī)的狂熱,他最近邀請(qǐng)我去他的公寓欣賞他的新杰作,一臺(tái)自制的 3D 打印機(jī)。嗯,他確實(shí)很好地為我打印了一只三條腿半個(gè)頭的小狗,但真正引起我注意的是他的打印機(jī)在制作小狗時(shí)發(fā)出的小聲響。因此,在贊揚(yáng)了他的出色工作之后,我們花了一些時(shí)間討論導(dǎo)致這種噪音的原因。
很明顯,高效率和小尺寸是 DC/DC 轉(zhuǎn)換器解決方案的關(guān)鍵基準(zhǔn)。作為一名系統(tǒng)工程師,我敏銳地意識(shí)到更高的效率是減少功率損耗、降低組件溫度以及在給定氣流和環(huán)境溫度環(huán)境下提供更多可用功率的藍(lán)圖。然而,將解決方案壓縮成一個(gè)小的 PCB 尺寸是另一個(gè)挑戰(zhàn)。
電磁干擾(EMI)歷來(lái)是讓PCB設(shè)計(jì)工程師們頭疼的一個(gè)問題,它威脅著電子設(shè)備的安全性、可靠性和穩(wěn)定性。因此,我們?cè)谠O(shè)計(jì)PCB時(shí),需要遵循一定的原則,使電路板的電磁干擾控制在一定的范圍內(nèi),達(dá)到設(shè)計(jì)要求和標(biāo)準(zhǔn),提高電路的整體性能。
在許多無(wú)線基站應(yīng)用中,隔離電源轉(zhuǎn)換器的電源是通過 -48 V 電源提供的。通信基站使用-48V電源很大部分有歷史原因,歷史上,通信行業(yè)設(shè)備一直使用-48V直流供電。-48V也就是正極接地。因?yàn)樽钚〉耐ㄓ嵕W(wǎng)和通信工程都是用的電話網(wǎng),電信局供電電壓都是48V的,后期工程和端口通訊設(shè)備為了兼容早期設(shè)備,降低更換成本,基本都用的-48V的電源。
跨阻抗放大器(TIA) 最常使用運(yùn)算放大器(op amps) 構(gòu)建。而且,越來(lái)越多的(如果不是全部的話)模數(shù)轉(zhuǎn)換器(ADC) 是全差分系統(tǒng),需要具有單端差分機(jī)制。TIA由于具有高帶寬的優(yōu)點(diǎn),一般用于高速電路,如光電傳輸通訊系統(tǒng)中普遍使用。
從表面上看,我們可能認(rèn)為驅(qū)動(dòng)螺線管或閥門執(zhí)行器接縫非常簡(jiǎn)單。老實(shí)說,在大多數(shù)情況下確實(shí)如此。打開或關(guān)閉電流并不是很困難。但是,如果我們的應(yīng)用程序需要非常快速地打開/關(guān)閉負(fù)載驅(qū)動(dòng)怎么辦?實(shí)現(xiàn)這一目標(biāo)的最佳方法是什么?
用于測(cè)量負(fù)載電流的標(biāo)準(zhǔn)方法之一是在負(fù)載線中插入一個(gè)低阻值電阻器并檢測(cè)其兩端的電壓,圖 1,然后是歐姆定律的模擬或數(shù)字實(shí)現(xiàn)。
運(yùn)算放大器(通常稱為運(yùn)算放大器)是用于設(shè)計(jì)電子電路的無(wú)處不在的構(gòu)建塊。今天,這些設(shè)備被制造成小型集成電路,但這個(gè)概念很久以前就開始使用真空管了。有一項(xiàng) 1946 年早期使用運(yùn)算放大器概念的專利,盡管當(dāng)時(shí)并未使用該名稱。Raggazinni 經(jīng)常被認(rèn)為是在 1947 年創(chuàng)造了“運(yùn)算放大器”一詞。
碳化硅 (SiC) 是一種日益重要的半導(dǎo)體材料,未來(lái)它肯定會(huì)取代硅用于大功率應(yīng)用。為了更好地管理 SiC 器件,有必要?jiǎng)?chuàng)建一個(gè)足夠的驅(qū)動(dòng)程序,以保證其清晰的激活或停用。通常,要關(guān)閉它,“柵極”和“源極”之間需要大約 20 V 的電壓,而要打開它,需要大約 -5 V 的負(fù)電壓(地),并且開關(guān)驅(qū)動(dòng)器必須非??欤駝t會(huì)增加工作溫度、開關(guān)損耗和更大的電阻 Rds(on)。
使用本設(shè)計(jì)實(shí)例中描述的快速動(dòng)態(tài)負(fù)載來(lái)測(cè)試電力系統(tǒng)的瞬態(tài)響應(yīng)可以揭示許多關(guān)鍵的運(yùn)行特性。快速電流階躍導(dǎo)致的電壓偏差可以提供對(duì)穩(wěn)壓器相位裕度的深入了解。此外,對(duì)于距離負(fù)載點(diǎn)有一定距離的電源,瞬態(tài)測(cè)試可以幫助確定有效的串聯(lián)互連電感、并聯(lián)電容和 ESR。雖然商業(yè)電源的相位裕度通常由供應(yīng)商驗(yàn)證,但添加遠(yuǎn)程感應(yīng)通常會(huì)破壞電源的穩(wěn)定性?;ミB電感和負(fù)載電容會(huì)在調(diào)節(jié)器控制回路反饋中引入額外的相移,從而影響穩(wěn)定性。
螺線管是機(jī)電致動(dòng)器,具有稱為柱塞的自由移動(dòng)磁芯。通常,螺線管由螺旋形線圈和鐵制成的動(dòng)鐵芯組成。 當(dāng)電流通過螺線管線圈時(shí),它會(huì)在其內(nèi)部產(chǎn)生磁場(chǎng)。該磁場(chǎng)產(chǎn)生拉入柱塞的力。當(dāng)磁場(chǎng)產(chǎn)生足夠的力來(lái)拉動(dòng)柱塞時(shí),它會(huì)在螺線管內(nèi)移動(dòng),直到達(dá)到機(jī)械停止位置。當(dāng)柱塞已經(jīng)在螺線管內(nèi)時(shí),磁場(chǎng)會(huì)產(chǎn)生力將柱塞固定到位。當(dāng)電流從螺線管線圈中移除時(shí),柱塞將在螺線管中安裝的彈簧推動(dòng)下返回其原始位置。
沒有一些專門設(shè)備的情況下,測(cè)試和測(cè)量 IC 或電路在電源瞬態(tài)方面的性能是一項(xiàng)棘手的任務(wù)。輸入電壓源不僅需要以受控方式改變,而且還必須能夠提供足夠的電流來(lái)調(diào)節(jié)輸入電容并為被測(cè)電路供電。