日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 單片機 > 單片機
[導讀] 很少有人知道當手臂拿起一個球時神經、臂膀和傳感系統(tǒng)之間的交互。為了模擬這一自然反應過程,可以通過微處理器、嵌入式控制軟件、執(zhí)行機構和傳感器來構造這一系統(tǒng)從而來研究它們之間的復雜關系。這也是美國國防高級

很少有人知道當手臂拿起一個球時神經、臂膀和傳感系統(tǒng)之間的交互。為了模擬這一自然反應過程,可以通過微處理器、嵌入式控制軟件、執(zhí)行機構和傳感器來構造這一系統(tǒng)從而來研究它們之間的復雜關系。這也是美國國防高級研究計劃署(DARPA)革命性假肢計劃所面臨的挑戰(zhàn)。

美國約翰霍普金斯大學應用物理實驗室是領導性的全球團隊,包括政府機構、大學、私有企業(yè),他們的任務是開發(fā)世界上最先進的假肢,此假肢由神經輸入控制,使佩戴者感覺是一個真的手臂一樣能夠以一定的速度、靈敏度和力去運動。先進的傳感反饋技術能夠感知物理輸入,如壓力、力和溫度。

這個項目中具有里程碑意義的關鍵部分是虛擬綜合環(huán)境的開發(fā),一個完整的手臂系統(tǒng)的仿真環(huán)境使用The Mathworks工具和基于模型設計。虛擬綜合環(huán)境具有標準化的架構和定義完善的界面,能夠使二十多不同領域專家很好地合作。

The Mathworks工具基于模型設計也被用在其他開發(fā)階段,包括對臂的機械系統(tǒng)進行建模、測試新的神經解碼算法和開發(fā)與驗證控制算法。

為 DARPA計劃開發(fā)的兩個原型手臂使用了目標肌肉神經系統(tǒng),這項技術是由芝加哥康復研究院Todd Kuiken博士研發(fā)的,內容包括從被切除手臂到未使用的傷害處的肌肉區(qū)域的殘留神經的傳輸。在臨床評估中,第一個原型能夠使患者完成各種功能任務,包括從口袋里拿一個信用卡。

Virtual Integration Environment Architecture

The VIE architecture consists of five main modules: Input, Signal Analysis, Controls, Plant, and Presentation.

The Input module comprises all the input devices that patients can use to signal their intent, including surface electromyograms (EMGs), cortical and peripheral nerve implants, implantable myoelectric sensors (IMESs) and more conventional digital and analog inputs for switches, joysticks, and other control sources used by clinicians. The Signal Analysis module performs signal processing and filtering. More important, this module applies pattern recognition algorithms that interpret raw input signals to extract the user’s intent and communicate that intent to the Controls module. In the Controls module, those commands are mapped to motor signals that control the individual motors that actuate the limb, hand, and fingers.

The Plant module consists of a physical model of the limb’s mechanics. The Presentation module produces a three-dimensional (3D) rendering of the arm’s movement (Figure 1).


圖1 假肢三維視圖

Interfacing with the Nervous System

Simulink® and the VIE were essential to developing an interface to the nervous system that allows natural and intuitive control of the prosthetic limb system. Researchers record data from neural device implants while the subjects perform tasks such as reaching for a ball in the virtual environment. The VIE modular input systems receive this data, and MATLAB® algorithms decode the subject’s intent by using pattern recognition to correlate neural activity with the subject’s movement (Figure 2). The results are integrated back into the VIE, where experiments can be run in real time.



圖2 紐布朗斯威克大學開發(fā)了MATLAB應用程序,記錄用于模式識別的運動數(shù)據(jù)。

The same workflow has been used to develop input devices of all kinds, some of which are already being tested by prosthetic limb users at the Rehabilitation Institute of Chicago.

Building Real-Time Prototype Controllers

The Signal Analysis and Controls modules of the VIE form the heart of the control system that will ultimately be deployed in the prosthetic arm. At APL, we developed the software for these modules. Individual algorithms were developed in MATLAB using the Embedded MATLAB™ subset and then integrated into a Simulink model of the system as function blocks. To create a real-time prototype of the control system, we generated code for the complete system, including the Simulink and Embedded MATLAB components, with Real-Time Workshop®, and deployed this code to xPC Target™.

This approach brought many advantages. Using Model-Based Design and Simulink, we modeled the complete system and simulated it to optimize and verify the design. We were able to rapidly build and test a virtual prototype system before committing to a specific hardware platform. With Real-Time Workshop Embedded Coder™ we generated target-specific code for our processor. Because the code is generated from a Simulink system model that has been safety-tested and verified through simulation, there is no hand-coding step that could introduce errors or unplanned behaviors. As a result, we have a high degree of confidence that the Modular Prosthetic Limb will perform as intended and designed.

Physical Modeling and Visualization

To perform closed-loop simulations of our control system, we developed a plant model representing the inertial properties of the limb system. We began with CAD assemblies of limb components designed in SolidWorks® by our partners. We used the CAD assemblies to automatically generate a SimMechanics™ model of the limb linked to our control system in Simulink.

Finally, we linked the plant model to a Java™ 3D rendering engine developed at the University of Southern California to show a virtual limb moving in a simulated environment.

Clinical Application

Given the powerful virtual system framework, we were also able to create a useful and intuitive clinical environment for system configuration and training. Clinicians can configure parameters in the VIE and manage test sessions with volunteer subjects using a GUI that we created in MATLAB (Figure 3).

Clinicians interact with this application on a host PC that communicates with the xPC Target system running the control software in real time. A third PC is used for 3D rendering and display of the virtual limb. During tests of actual limbs, we can correlate and visualize control signals while the subject is moving.

Looking Ahead

Using Model-Based Design, the Revolutionizing Prosthetics team has delivered Proto 1, Proto 2, and the first version of the VIE ahead of schedule. Currently we are in the process of developing a detailed design of the Modular Prosthetic Limb, the version that we will deliver to DARPA.

Many of our partner institutions use the VIE as a test bed as they continue to improve their systems, and we envision the VIE continuing as a platform for further development in prosthetics and neuroscience for years to come. Our team has established a development process that we can use to rapidly assemble systems from reusable models and implement on prototype hardware, not only for the Revolutionizing Prosthetics project but for related programs as well.

As we meet the challenge of building a mechatronic system that mimics natural motion, we strive to match the perseverance and commitment that our volunteer subjects and the amputee population at large demonstrate every day.

Approved for Public Release, Distribution Unlimited.

Mimicking Nature on a Deadline

Developing a mechatronic system that replicates natural motion and preparing it for clinical trials in just four years, as mandated by DARPA, requires breakthroughs in neural control, sensory input, advanced mechanics and actuators, and prosthesis design.

State-of-the-art prosthetic arms today typically have just three active degrees of freedom: elbow flex/extend, wrist rotate, and grip open/close. Proto 1, our first prototype, added five more degrees of freedom, including two active degrees of freedom at the shoulder (flexion/extension and internal/external rotation), wrist flexion/extention, and additional hand grips. To emulate natural movement, we needed to go far beyond the advances in Proto 1.

Proto 2, which was developed as an electromechanical proof of concept, had more than 22 degrees of freedom, including additional side-to-side movements at the shoulder (abduction/adduction), wrist (radial/unlar deviation), and independent articulation of the fingers. The hand can also be commanded into multiple highly functional coordinated “grasps.”

The Modular Prosthetic Limb—the version that we will deliver to DARPA—will have 27 degrees of freedom, as well as the ability to sense temperature, contact, pressure, and vibration.

Proto 2 hand grasps. Click on image to see enlarged view.

Products Used

MATLAB®
Real-Time Workshop®
Real-Time Workshop® Embedded Coder™
SimMechanics™
Simulink®
xPC Target
Resources

Johns Hopkins University Applied Physics Laboratory
Model-Based Design

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

今年7月份,Stellantis集團宣布,由于之前宣布的Stellantis獲得與廣汽集團合資企業(yè)廣汽菲克多數(shù)股份的計劃缺乏進展,Stellantis將采用輕資產方式在中國發(fā)展Jeep品牌,并與廣汽集團協(xié)商終止本地合資企...

關鍵字: ANTI LAN 汽車 TE

創(chuàng)新藥研發(fā)公司應世生物宣布在第19屆國際黑色素瘤學會年會公布旗下在研管線IN10018 一項在美國和澳大利亞開展的Ib 期惡性黑色素瘤臨床研究初步結果。數(shù)據(jù)顯示,IN10018在治療葡萄膜黑色素瘤(Uveal Melan...

關鍵字: LAN 管線

近日,LG U+采用基于Siena和開放LAN標準的小型蜂窩室內解決方案,實現(xiàn)了室內5G移動通信服務。LG U+使用美國電信設備公司Airspan的開放式LAN小型基站天線和基站軟件,以及美國電信設備公司Druid的5G...

關鍵字: LG LAN 小型蜂窩

濟南2022年10月14日 /美通社/ -- 近日,浪潮新基建成功通過CMMI(軟件能力成熟度集成模型)三級認證并正式獲得資質證書。繼2021年組建后,僅一年時間就斬獲全球軟件領域最權威的認證之一,標志著浪潮新基建在技術...

關鍵字: 軟件 新基建 智慧城市 模型

北京2022年10月13日 /美通社/ -- 近日,中科寒武紀科技股份有限公司(以下簡稱"寒武紀")的思元370系列智能加速卡與浪潮AIStation智能業(yè)務生產創(chuàng)新平臺完成兼容性適配認證,...

關鍵字: STATION 加速卡 AI 模型

蘇州2022年10月13日 /美通社/ -- 北京時間2022年10月13日,開拓藥業(yè)(股票代碼:9939.HK),一家專注于潛在同類首創(chuàng)和同類最佳創(chuàng)新藥物研發(fā)及產業(yè)化的生物制藥公司,宣布其聯(lián)合美國德克薩斯大學...

關鍵字: 模型 LM EMI PD

迪士尼(Walt Disney Co.)提高了其Genie+服務的價格,該服務讓佛羅里達州華特迪士尼世界度假區(qū)(Walt Disney World Resort)和加州迪士尼樂園度假區(qū)(Disneyland Resort...

關鍵字: GEN NI FAST LAN

(全球TMT2022年10月11日訊)近日,昆侖芯(北京)科技有限公司的第二代云端通用人工智能計算處理器昆侖芯2代AI芯片及AI加速卡與飛槳完成III級兼容性測試,兼容性表現(xiàn)良好。 產品兼容性證明 本次...

關鍵字: 人工智能 加速卡 處理器 模型

來見識下這位95后的手工大神。據(jù)媒體報道,山東青島一女生耗時一個月,使用10斤巧克力,復刻了《武林外傳》里的小院,堪稱神還原。女孩介紹,大大小小的物件超過200件,每一個小物件都是用巧克力、翻糖和糯米紙做的,模型長度大概...

關鍵字: 模型

北京2022年9月27日 /美通社/ -- 近期,為助力中小企業(yè)創(chuàng)新發(fā)展,承接"828 B2B企業(yè)節(jié)"成就好生意,成為好企業(yè)的愿景。軟通動力著力打造了"917轉型"企動日主題峰會,會上發(fā)布了一系列新品和解決方案,面向多個...

關鍵字: DM 數(shù)字化 大數(shù)據(jù) 模型

單片機

21600 篇文章

關注

發(fā)布文章

編輯精選

技術子站

關閉