
摘要:文章從數(shù)學(xué)上分析了運算放大器的有限增益帶寬積對active-RC濾波器Q值的影響,得出了濾波器Q值升高的結(jié)論,并且研究了濾波器Q值升高的補償方法。我們對5階低通濾波器的Biquad引入補償電容Cm的前后進行仿真對比
從設(shè)計角度看,超級電容和電池的根本區(qū)別在于電容器在充/放電周期發(fā)生的顯著電壓變化。充電時,理論上,電容器的電壓從零上升到其最高額定電壓,而電池的端電壓在其工作周期中變化很小。超級電容是電子電容器的一個子
從設(shè)計角度看,超級電容和電池的根本區(qū)別在于電容器在充/放電周期發(fā)生的顯著電壓變化。充電時,理論上,電容器的電壓從零上升到其最高額定電壓,而電池的端電壓在其工作周期中變化很小。超級電容是電子電容器的一個子
設(shè)計了一種寬帶軌對軌運算放大器,此運算放大器在3.3 V單電源下供電,采用電流鏡和尾電流開關(guān)控制來實現(xiàn)輸入級總跨導(dǎo)的恒定。為了能夠處理寬的電平范圍和得到足夠的放大倍數(shù),采用用折疊式共源共柵結(jié)構(gòu)作為前級放大。
引言 根據(jù)物聯(lián)網(wǎng)對傳感器技術(shù)的要求,研究其信號的放大與傳輸技術(shù)是目前傳感網(wǎng)的研究熱點之一。如何提高微弱的光傳感器信號的放大性能和傳輸效率,是光傳感器需要解決的關(guān)鍵技術(shù)之一。本文主要針對光傳感器的放大
引言 根據(jù)物聯(lián)網(wǎng)對傳感器技術(shù)的要求,研究其信號的放大與傳輸技術(shù)是目前傳感網(wǎng)的研究熱點之一。如何提高微弱的光傳感器信號的放大性能和傳輸效率,是光傳感器需要解決的關(guān)鍵技術(shù)之一。本文主要針對光傳感器的放大
引言 根據(jù)物聯(lián)網(wǎng)對傳感器技術(shù)的要求,研究其信號的放大與傳輸技術(shù)是目前傳感網(wǎng)的研究熱點之一。如何提高微弱的光傳感器信號的放大性能和傳輸效率,是光傳感器需要解決的關(guān)鍵技術(shù)之一。本文主要針對光傳感器的放大
21ic訊 日前,德州儀器 (TI) 宣布推出業(yè)界首款零漂移 36 V 運算放大器。該雙通道 OPA2188 與同類競爭產(chǎn)品相比,可在相同功耗下將失調(diào)電壓漂移改善 4 倍,初始失調(diào)電壓改善 60%,帶寬提高 1 倍。OPA2188 可用于對精度
21ic訊 ADI最近推出雙通道、精密微功耗運算放大器 ADA4096-2 ,這是業(yè)界首款±30 V以上 集成輸入過壓保護 (OVP)的精密運算放大器,業(yè)界領(lǐng)先的內(nèi)部輸入過壓保護功能可以耐受供電軌上下32 V的電壓,采用ADA4096-
這個差動放大器只需三個廉價的普通運算放大器和幾只電阻器,即可構(gòu)成性能優(yōu)越的儀表用放大器。廣泛應(yīng)用于工業(yè)自動控制、儀器儀表、電氣測量、醫(yī)療器械及其它數(shù)字采集的系統(tǒng)中。 電路圖參見圖1。電路原理并不復(fù)雜。要
放大器作為集成電路的一種重要的組成部分是國內(nèi)外研究的熱點。電壓模式放大器有一個明顯的缺點就是隨著被處理信號的頻率越來越高,電壓模式電路的固有缺點開始阻礙它在高頻高速環(huán)境中的應(yīng)用。主要由于閉環(huán)增益和閉環(huán)帶
摘要:大多數(shù)現(xiàn)代系統(tǒng)中的電子器件通常采用3.3V或更低的電壓供電,但有時還需提供±10V的電壓驅(qū)動外部負載(工業(yè)應(yīng)用中非常普遍)。盡管有些數(shù)/模轉(zhuǎn)換器(DAC)能夠以±10V的擺幅驅(qū)動負載,但在某些場合仍然
3V DAC在±10V中的應(yīng)用
摘要:便攜設(shè)備的發(fā)展,要求電子元器件往小型化和低功耗方向發(fā)展,作為超小型封裝的單運算放大器TS321和單電壓比較器TS391在各方面的很好的滿足了這一要求。文中主要介紹這兩款器件的工作原理和一些基本應(yīng)用。它們的
介紹了一種基于襯底驅(qū)動技術(shù)的低電壓低功耗運算放大器。輸入級采用襯底驅(qū)動MOSFET,有效避開閾值電壓限制;輸出采用改進前饋式AB類輸出級,確保了輸出級晶體管的電流能夠得到精確控制,使輸出擺幅達到軌至軌。整個電路采用PTM標準0.18 μm CMOS工藝參數(shù)進行設(shè)計,用Hspice進行仿真。模擬結(jié)果顯示,測得直流開環(huán)增益為62.1 dB,單位增益帶寬為2.13 MHz,相位裕度52°,電路在0.8 V低電壓下正常運行,電路平均功耗只有65.9 μW。