日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 技術學院 > 技術解析
[導讀]為增進大家對神經網絡模型的認識,本文將對常見的神經網絡模型予以介紹。

神經網絡模型是機器學習、深度學習的核心,針對不同的問題,我們需要搭建不同的神經網絡模型。為增進大家對神經網絡模型的認識,本文將對常見的神經網絡模型予以介紹。如果你對神經網絡模型具有興趣,不妨繼續(xù)往下閱讀哦。

1、BP神經網絡

BP(BackPropagation)神經網絡是一種神經網絡學習算法。其由輸入層、中間層、輸出層組成的階層型神經網絡,中間層可擴展為多層。相鄰層之間各神經元進行全連接,而每層各神經元之間無連接,網絡按有教師示教的方式進行學習,當一對學習模式提供給網絡后,各神經元獲得網絡的輸入響應產生連接權值(Weight)。然后按減小希望輸出與實際輸出誤差的方向,從輸出層經各中間層逐層修正各連接權,回到輸入層。此過程反復交替進行,直至網絡的全局誤差趨向給定的極小值,即完成學習的過程。

2、RBF(徑向基)神經網絡

徑向基函數(RBF-RadialBasisFunction)神經網絡是由J.Moody和C.Darken在80年代末提出的一種神經網絡,它是具有單隱層的三層前饋網絡。由于它模擬了人腦中局部調整、相互覆蓋接收域(或稱感受野-ReceptiveField)的神經網絡結構,因此,RBF網絡是一種局部逼近網絡,它能夠以任意精度逼近任意連續(xù)函數,特別適合于解決分類問題。

3、感知器神經網絡

是一個具有單層計算神經元的神經網絡,網絡的傳遞函數是線性閾值單元。原始的感知器神經網絡只有一個神經元。主要用來模擬人腦的感知特征,由于采取閾值單元作為傳遞函數,所以只能輸出兩個值,適合簡單的模式分類問題。當感知器用于兩類模式分類時,相當于在高維樣本空間用一個超平面將兩類樣本分開,但是單層感知器只能處理線性問題,對于非線性或者線性不可分問題無能為力。假設p是輸入向量,w是權值矩陣向量,b為閾值向量,由于其傳遞函數是閾值單元,也就是所謂的硬限幅函數,那么感知器的決策邊界就是wp+b,當wp+b〉=0時,判定類別1,否則判定為類別2。

4、線性神經網絡

線性神經網絡是比較簡單的一種神經網絡,由一個或者多個線性神經元構成。采用線性函數作為傳遞函數,所以輸出可以是任意值。線性神經網絡可以采用基于最小二乘LMS的Widrow-Hoff學習規(guī)則調節(jié)網絡的權值和閾值,和感知器一樣,線性神經網絡只能處理反應輸入輸出樣本向量空間的線性映射關系,也只能處理線性可分問題。目前線性神經網絡在函數擬合、信號濾波、預測、控制等方面有廣泛的應用。線性神經網絡和感知器網絡不同,它的傳遞函數是線性函數,輸入和輸出之間是簡單的純比例關系,而且神經元的個數可以是多個。只有一個神經元的線性神經網絡僅僅在傳遞函數上和感知器不同,前者是線性函數的傳遞函數,后者是閾值單元的傳遞函數,僅此而已。

5、自組織神經網絡

在生物神經細胞中存在一種特征敏感細胞,這種細胞只對外界信號刺激的某一特征敏感,并且這種特征是通過自學習形成的。在人腦的腦皮層中,對于外界信號刺激的感知和處理是分區(qū)進行的,有學者認為,腦皮層通過鄰近神經細胞的相互競爭學習,自適應的發(fā)展稱為對不同性質的信號敏感的區(qū)域。根據這一特征現象,芬蘭學者Kohonen提出了自組織特征映射神經網絡模型。他認為一個神經網絡在接受外界輸入模式時,會自適應的對輸入信號的特征進行學習,進而自組織成不同的區(qū)域,并且在各個區(qū)域對輸入模式具有不同的響應特征。在輸出空間中,這些神經元將形成一張映射圖,映射圖中功能相同的神經元靠的比較近,功能不同的神經元分的比較開,自組織特征映射網絡也是因此得名。

自組織映射過程是通過競爭學習完成的。所謂競爭學習是指同一層神經元之間相互競爭,競爭勝利的神經元修改與其連接的連接權值的過程。競爭學習是一種無監(jiān)督學習方法,在學習過程中,只需要向網絡提供一些學習樣本,而無需提供理想的目標輸出,網絡根據輸入樣本的特性進行自組織映射,從而對樣本進行自動排序和分類。

自組織神經網絡包括自組織競爭網絡、自組織特征映射網絡、學習向量量化等網絡結構形式。

6、反饋神經網絡

前面介紹的網絡都是前向網絡,實際應用中還有另外一種網絡——反饋網絡。在反饋網絡中,信息在前向傳遞的同時還要進行反向傳遞,這種信息的反饋可以發(fā)生在不同網絡層的神經元之間,也可以只局限于某一層神經元上。由于反饋網絡屬于動態(tài)網絡,只有滿足了穩(wěn)定條件,網絡才能在工作了一段時間之后達到穩(wěn)定狀態(tài)。反饋網絡的典型代表是Elman網絡和Hopfield網絡。

以上便是此次小編帶來的神經網絡模型相關內容,通過本文,希望大家對常見的神經網絡模型具備一定的了解。如果你喜歡本文,不妨持續(xù)關注我們網站哦,小編將于后期帶來更多精彩內容。最后,十分感謝大家的閱讀,have a nice day!

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統,而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉