日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 廠商動態(tài) > 英飛凌
[導讀]在電源芯片的數(shù)字控制方法中,經(jīng)常引入延遲環(huán)節(jié)。在引入延遲環(huán)節(jié)后,分析電路響應的方法特別是定量計算會變得比較復雜。本文通過對一種有延遲環(huán)節(jié)的burst控制方法的分析,提出一種可用于工程實踐的方法,那就是通過電路分析,用在靜態(tài)工作點作瞬態(tài)響應仿真的方法得到參數(shù)調(diào)試方向。

引言

在現(xiàn)代電源芯片設計中,模數(shù)結合的方法已經(jīng)很常見。數(shù)字控制的方法的好處是:抗干擾能力強; 控制精確; 靈活性好; 系統(tǒng)的兼容性好; 方便實現(xiàn)電源管理。在數(shù)字控制模式中,可以輕松引入延遲環(huán)節(jié),讓控制更加靈活,高效。這種方法帶來的問題是,在引入延遲環(huán)節(jié)后,在電源工程設計中,最常見的用零極分布來分析電路響應的方法不再適用。引入延遲環(huán)節(jié)后,通常傳遞函數(shù)用(G(s))來表示,但在真實過程中,τ 的不確定性讓分析難度加大。在工程實踐中, 仿真的辦法,是快速理解與找到解決問題的有效手段。那么如何設定仿真模型可以得到理想的結果就很重要。本文將基于對一種burst控制方法的理解,給出一種在靜態(tài)工作點作瞬態(tài)響應仿真的方法來獲得對這類問題的理解與工程解決方法。

一種有延遲環(huán)節(jié)的burst控制方法

在這種控制方法里,如圖一所示,當芯片進入主動BURST 模式后,芯片停止發(fā)出驅(qū)動脈沖,也就是圖中VCS信號沒有出現(xiàn)的區(qū)間,因為輸出電壓的下跌,反饋作用的拉電流(一般是光藕的作用)消失,芯片的FB引腳上的電壓在內(nèi)部電流的作用下開始快速上升,直到VFB_BON 信號,并重新喚醒芯片發(fā)出驅(qū)動脈沖,讓下跌中的輸出電壓回歸正常值。

上面的分析過程是一種設計想得到的理想狀態(tài)。在實際應用中,我們會發(fā)現(xiàn),在輸出電容較小,不合理的反饋設計下,F(xiàn)B引腳上的電壓快速上升的時間會遠大于芯片理想的設計時間,輸出電壓的跌落幅度變得不可接受。理論上應該消失的從光藕反饋過來的拉電流并不會因為輸出電壓的跌落馬上消失,這將導致,輸出電壓跌落過多,而且傳統(tǒng)經(jīng)典的適用于線性時不變系統(tǒng)的控制理論,無法很好的解釋與解決這個問題。

burst 控制方法如下圖

圖一:burst 控制方法

常見的控制電路及靜態(tài)工作點的分析

圖二:常見反饋電路

如圖二所示,這是一種常見的由TL431 與光藕組成反饋電路,反饋補償是Ⅱ類補償電路。輸出電壓為12V。靜態(tài)工作點主要是確定兩個反饋電容在穩(wěn)態(tài)時的電壓值。

首先定義光藕的工作狀態(tài): CTR :50%; VF: 1.45V

定義光藕的工作電流:IF: 0.33mA (備注:此電流由芯片工作狀態(tài)決定)

定義TL431參考腳電壓: Vref: 2.5V

定義輸出電壓:Vout=12V

反饋補償?shù)碾娙荩–1,C2)上的電壓為: Vout-VF-(IF*R5)-Vref

得到反饋補償?shù)碾娙荩–1,C2)上的電壓為: 12V-1.45V-(0.33mA x1k)-2.5V ≈ 8V

由此得到在12V穩(wěn)態(tài)下,C1,C2上的電壓為8V

仿真建立方法與等效仿真模型

實際工程樣機為一臺60W,12V/5A的電源,控制芯片的burst 控制方法如前圖一所示

假定設計目標為進入burst態(tài),重新發(fā)出驅(qū)動時,12V 輸出電壓的跌落小于0.5V,以此設定仿真的電壓源,如圖所示,12V 的輸出,電壓源取11.5V

反饋網(wǎng)絡取值等同于實際電路取值

用二極管取代光藕,去光藕的CTR 動態(tài)

用流經(jīng)二極管的電流等效芯片反饋(FB)電壓的變化速率

設定反饋電容的初始電壓為系統(tǒng)輸出電壓為12V 穩(wěn)態(tài)時的初始電壓(如圖為8V)

選定SIMETRIX為仿真工具,分析模型選擇瞬態(tài)分析。

建立的仿真電路如下圖三所示。

圖三:仿真電路

這種仿真分析方法的目的是用來幫助理解電路的工作與工程實踐中的元件參數(shù)的調(diào)試方向。很明顯,流經(jīng)此二極管的電流會影響電源控制芯片反饋(FB) 腳上電壓的上升,控制的目標就是,讓這一路電流盡快掉到最小,以得到反饋(FB)電壓的上升。

仿真結果如下:

電路的初始參數(shù)如圖三所示

選取不同的反饋電阻值,如圖三中的R2(3k-100k),對流經(jīng)光藕的電流IPROB2分析,得到圖四,圖五,不同反饋補償電阻值下的光藕電流隨時間變化規(guī)律。

圖四:不同反饋補償電阻值下的光藕電流隨時間變化規(guī)律

圖五:不同反饋補償電阻值下的光藕電流隨時間變化規(guī)律(放大版)

選取不同的反饋電容值,圖三中的C1(10nF-1uF) ,對流經(jīng)光藕的電流IPROB2分析,得到圖六。

圖六:不同反饋補償電容(C1)值下的光藕電流隨時間變化規(guī)律

選取不同的反饋電容值,圖三中的C2(1nF-100nF),對流經(jīng)光藕的電流IPROB2分析,得到圖七。

圖七:不同反饋補償電容(C2)值下的光藕電流隨時間變化規(guī)律

仿真結果分析

從仿真的結果看,環(huán)路補償?shù)娜齻€參數(shù)對流過光藕的電流,即同比于FB上升(延時)到重新開啟輸出驅(qū)動的時間,影響很不相同。電阻R2的選擇影響很大,超過一定值后,開始收斂,影響開始變化不大。選好較大值的R2 后,與之串聯(lián)的C1,對結果影響很小。而極點電容C2 ,值選的越大,結果越差。

從理論分析來看,如圖三所示,當電源主控芯片停止發(fā)驅(qū)動, 輸出下跌后,TL431的參考電壓低于TL431的基準電壓2.5V,TL431的陰極電壓就會上升,這個上升的電壓會通過反饋補償網(wǎng)絡R1,C1,C2補償TL431的基準電壓,如果基準電壓被重新抬升到2.5V,TL431會重新導通,產(chǎn)生拉電流,這個電流會有部分流過光藕,影響了流過光藕的電流收斂速度,并與陰極上升的電壓建立一定程度的動態(tài)平衡。這與仿真的結果是一致的。

實驗驗證

在實際應用中,C2的值一般都比較小,主要考慮R2 ,C1的影響,為此實驗選擇了一臺60W,輸出12V/5A 的電源,按照圖三的反饋網(wǎng)絡,選取不同參數(shù),測試FB引腳上的電壓快速上升的時間(TR),來驗證仿真結果。實際測試中,為了得到系統(tǒng)進出Burst的條件,負載設為動態(tài),從1A到0.3A動態(tài)變化。波形八到十三的圖中,曲線C1為實測的FB 引腳上的電壓波形,曲線C2為芯片的驅(qū)動波形。

1)選取參數(shù)如下:首先定義電容C2的值為1nF,定義電容C1 的值為100nF,選取不同的電阻R2 的值: 3K,9.1K,20K,75K。(結果見圖八,圖九,圖十, 圖十一)

2)選取參數(shù)如下:首先定義電容C2的值為1nF, 定義R2 的值為75K,選取不同的C1 的值: 1uF,10nF. (結果見圖十二,十三)

實際測試結果如下表一和表二

圖八:3K/100nF740Us

圖九:9.1K/100nF 582.6US

圖十:20K/100nF 427.8uS

圖十一:75k/100nF 259uS

圖十二:75K /1uF 276.6uS

圖十三:75K/10nF250.6uS

結論

從實測的結果來看,反饋電壓(FB)的上升時間與仿真的結果,變化的方向完全一致。因而,這種仿真方法能在這種有延遲環(huán)節(jié)的burst控制方法中得到響應時間的變化規(guī)律,在反饋補償網(wǎng)絡中,選擇較大的反饋電值,與較小的極點電容,有利于讓流過光藕的電流快速收斂至最小值。利用在靜態(tài)工作點作瞬態(tài)響應仿真的方法可以快速得到近似工程解。

參考文獻:

ICE5ARXXXBZS 數(shù)據(jù)表,英飛凌科技股份有限公司

DEMO 5GSAG 60W1演示板,英飛凌科技股份有限公司

Model 310, 0.01 Hz - 30 MHz Frequency Response Analyzer

開關電源環(huán)路中的TL431, Christophe Basso

Designing control loops for linear and switching power supplies, Christophe Basso

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅(qū)動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅(qū)動性能的關鍵。

關鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質(zhì)量和效率直接關系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅(qū)動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關鍵字: LED 驅(qū)動電源 開關電源

LED驅(qū)動電源是把電源供應轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅(qū)動電源
關閉