日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 芯聞號 > 充電吧
[導讀]準確預測未來幾分鐘到幾周的天氣是一項基本的科學挑戰(zhàn),它可以對社會的許多方面產(chǎn)生廣泛影響。很多氣象機構(gòu)目前采用的預報是基于大氣的物理模型。盡管在過去幾十年有很大的改進,但這些模型本身受到計算要求的限制。

準確預測未來幾分鐘到幾周的天氣是一項基本的科學挑戰(zhàn),它可以對社會的許多方面產(chǎn)生廣泛影響。

很多氣象機構(gòu)目前采用的預報是基于大氣的物理模型。盡管在過去幾十年有很大的改進,但這些模型本身受到計算要求的限制。并且,它們對物理定律的近似值非常敏感。

另一種能夠克服這些限制的天氣預報方法是使用深神經(jīng)網(wǎng)絡(luò)(DNNs)。DNNs 在強大的專用硬件(如 GPU 和 TPU)上使用并行計算,發(fā)現(xiàn)數(shù)據(jù)中的模式,并學習從輸入到所需輸出的復雜轉(zhuǎn)換。

近日,在先前對降水量預報的研究基礎(chǔ)上,Google 提出了 MetNet,這是一種用于降水預報的神經(jīng)天氣模型。這種 DNN 能夠在未來 8 小時內(nèi)以 1km 的分辨率預報降水量,時間間隔為 2 分鐘。MetNet 的預測時間比 NOAA 目前使用的最先進的基于物理的模型提前了 7-8 小時。它可以在幾秒鐘內(nèi)對整個美國的降水量進行預測,而 NOAA 需要花費一小時。

網(wǎng)絡(luò)的輸入來自雷達站和衛(wèi)星網(wǎng)絡(luò),無需人工標注。模型輸出是一個概率分布,Google 用它來推斷每個地理區(qū)域的降水率和相關(guān)的不確定性。下圖提供了該網(wǎng)絡(luò)對美國大陸的預測示例。

MetNet 模型預測結(jié)果與 NOAA 多雷達/多傳感器系統(tǒng)(MRMS)測量的地面真實值進行了比較。MetNet 模型(上圖頂部)顯示了從 2 分鐘到 480 分鐘前預測的每小時 1 毫米降水的概率,而 MRMS 數(shù)據(jù)(上圖底部)顯示了在同一時間段內(nèi)接收到至少每小時 1 毫米降水的區(qū)域。

神經(jīng)天氣模型

MetNet 不依賴于大氣動力學領(lǐng)域的物理定律,它是通過反向傳播學習,直接從觀測數(shù)據(jù)中預測天氣。該網(wǎng)絡(luò)使用由多雷達/多傳感器系統(tǒng)(MRMS)組成的地面雷達站,以及提供大氣中云層自頂向下的視圖的衛(wèi)星系統(tǒng)測量得出的降水量估計值。這兩個數(shù)據(jù)源均覆蓋美國大陸,并提供可由網(wǎng)絡(luò)有效處理的圖像類輸入。

該模型每 64km*64km 執(zhí)行一次,覆蓋整個美國,其分辨率為 1 km。然而,與這些輸出區(qū)域相比,輸入數(shù)據(jù)的實際物理覆蓋范圍要大得多,因為它必須考慮到在進行預測的時間段內(nèi)云和降水場的可能運動。

例如,假設(shè)云以每小時 60km 的速度移動,為了作出可靠的預測,捕捉到 8 小時前的大氣時間動態(tài),模型需要 60*8=480km 的全方位空間背景。因此,要達到這個程度,需要 1024km*1024km 區(qū)域中的信息來對中心 64km*64km 補丁進行預測。

包含衛(wèi)星和雷達圖像(1024 *1024 平方公里)的輸入補丁和輸出預測雷達圖像(64*64 平方公里)

由于以全分辨率處理 1024km*1024km 的區(qū)域需要大量內(nèi)存,因此研究人員使用空間下采樣器,通過減少輸入面片的空間維度來減少內(nèi)存消耗。同時,在輸入中查找并保留相關(guān)的天氣模式。然后沿降采樣輸入數(shù)據(jù)的時間維度應用時間編碼器,對 90 分鐘輸入數(shù)據(jù)的 7 個快照進行編碼,編碼片段長度為 15 分鐘。時間編碼器采用卷積 LSTM 實現(xiàn),該卷積 LSTM 特別適合于圖像序列。

然后,時間編碼器的輸出被傳遞到空間聚集器,空間聚集器使用軸向自關(guān)注,有效地捕獲數(shù)據(jù)中的長距離空間依賴性,并基于輸入目標時間使用可變數(shù)量的上下文,以在 64km*64km 的輸出上進行預測。

這種結(jié)構(gòu)的輸出是一個離散的概率分布,估計美國大陸每平方公里的給定降水率的概率。

神經(jīng)氣象模型 MetNet 的結(jié)構(gòu)

結(jié)果

研究人員根據(jù)一個降水率預測基準對 MetNet 進行評估,并將結(jié)果與兩個基線進行比較:NOAA 高分辨率快速刷新 HRRR 系統(tǒng),這是目前在美國運行的物理天氣預測模型;一個估計降水場運動(即光流)的基線模型,它是一種在預測時間少于 2 小時時,表現(xiàn)也很好的方法。

Google 的神經(jīng)天氣模型的一個顯著優(yōu)點是,它是為密集并行計算而優(yōu)化的,并且非常適合在專用硬件(如 TPU)上運行。無論是針對紐約市這樣的特定地點還是針對整個美國,預測可以在幾秒鐘內(nèi)并行進行。而像 HRRR 這樣的物理模型在超級計算機上的運行時間約為一小時。

在下面的圖表中,研究人員量化了 MetNet、HRRR 和光流基線模型之間的性能差異。這里展示了這三個模型所取得的性能,在降水率閾值為 1.0mm/h(相當于小雨)時使用 F1 分數(shù)進行評估。MetNet 神經(jīng)天氣模型能夠在 8 小時內(nèi)超過 NOAA-HRRR 系統(tǒng),并且始終優(yōu)于基于流量的模型。

1.0 mm/h 降水率(越高越好)下的 F1 得分評估性能。神經(jīng)天氣模型(MetNet)比目前在美國運行的基于物理的模型(HRRR)的時間尺度要提前 8 小時。

由于大氣的隨機性,未來天氣狀況的不確定性隨著預測時間的延長而增加。

MetNet 是一個概率模型,隨著預測時間的延長,預測的不確定性在可視化中表現(xiàn)為預測的日益平滑。相反,HRRR 并不直接進行概率預測,而是會對未來的降水情況進行單一的預測。下圖比較了 MetNet 模型和 HRRR 模型的輸出。

從 NOAA MRMS 系統(tǒng)獲得的 MetNet(上)和 HRRR(下)到地面真值(中)的輸出之間的比較。注意,雖然 HRRR 模型預測的結(jié)構(gòu)似乎更接近于基本事實,但預測的結(jié)構(gòu)可能嚴重錯誤。

與 MetNet 模型相比,HRRR 物理模型的預測更清晰、更結(jié)構(gòu)化。但其結(jié)構(gòu),特別是預測結(jié)構(gòu)的準確時間和位置的精度較低。這是由于初始情況和模型參數(shù)的不確定性造成的。

HRRR(左)從許多可能的結(jié)果中預測單個潛在的未來結(jié)果(紅色),而 MetNet(右)通過分配未來結(jié)果的概率直接解釋不確定性。

未來方向

Google 正在積極研究如何改進全球天氣預報模型,尤其是在氣候快速變化很大的地區(qū)的準確性。雖然上文展示了美國大陸目前的 MetNet 模型,但它可以擴展到任何有足夠雷達和光學衛(wèi)星數(shù)據(jù)的地區(qū)。本文提出的工作是這一努力的一個小小的墊腳石,Google 希望通過今后與氣象界的合作,能夠帶來更大的改進。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉