日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > 智能硬件 > 人工智能AI
[導(dǎo)讀] 近幾年,深度學(xué)習(xí)在人工智能、機器學(xué)習(xí)中取得了飛躍式的突破,特別是在語音識別和圖像識別等領(lǐng)域[1-3]。其中,深度神經(jīng)網(wǎng)絡(luò)由于結(jié)構(gòu)類似于生物神經(jīng)網(wǎng)絡(luò),因此擁有高效、精準(zhǔn)抽取信息深層隱含特征的能力和

近幾年,深度學(xué)習(xí)在人工智能、機器學(xué)習(xí)中取得了飛躍式的突破,特別是在語音識別和圖像識別等領(lǐng)域[1-3]。其中,深度神經(jīng)網(wǎng)絡(luò)由于結(jié)構(gòu)類似于生物神經(jīng)網(wǎng)絡(luò),因此擁有高效、精準(zhǔn)抽取信息深層隱含特征的能力和能夠?qū)W習(xí)多層的抽象特征表示,且能夠?qū)缬?、多源、異質(zhì)的內(nèi)容信息進行學(xué)習(xí)等優(yōu)勢,可以一定程度上處理推薦系統(tǒng)稀疏性、新物品、可擴張性等問題,這為推薦系統(tǒng)解決固有問題帶來了新的機遇。

本文提出了基于深度神經(jīng)網(wǎng)絡(luò)結(jié)合多用戶-項目、協(xié)同過濾的推薦模型(Multi-View-CollaboraTIve Filtering integraTIng Deep Neural Network,MV-CFiDNN)[4-6],基于深度神經(jīng)網(wǎng)絡(luò)理論,提取用戶、項目信息的深層隱含特征并自學(xué)習(xí)、優(yōu)化提取模型,最后結(jié)合多用戶-項目、協(xié)同過濾(CollaboraTIve Filtering)提供廣泛的個性化推薦。

1 深度神經(jīng)網(wǎng)絡(luò)推薦模型

基于深度學(xué)習(xí)的推薦系統(tǒng)通過將用戶和項目的各類原始數(shù)據(jù)信息提供給輸入層,在隱含層通過神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)模型進行用戶、項目的隱特征學(xué)習(xí)及抽取,最后通過學(xué)習(xí)隱表示實現(xiàn)用戶、項目推薦[7-8]?;谏疃壬窠?jīng)網(wǎng)絡(luò)框架的兩次自學(xué)習(xí)并結(jié)合協(xié)同過濾的CFiDNN框架如圖1所示。CFiDNN框架兩大核心為:候選生成網(wǎng)絡(luò)融合協(xié)同過濾與排名網(wǎng)絡(luò)結(jié)合協(xié)同過濾。

其中,候選集產(chǎn)生以用戶在瀏覽歷史記錄中的提取特征作為輸入信息,然后基于多源數(shù)據(jù)庫檢索到與用戶相關(guān)的一個數(shù)據(jù)集,這一數(shù)據(jù)集就是候選集。這部分候選集通過協(xié)同過濾(CF)實現(xiàn)廣泛個性化。再通過用戶、項目的多類特征源學(xué)習(xí)計算相似性,實現(xiàn)最小排名集,最后基于協(xié)同過濾實現(xiàn)推薦。

1.1 候選集生成模塊

對于候選集生成,首先,將用戶瀏覽及搜索項目等歷史記錄信息映射為向量,然后對其求平均值獲取定長表示;并且,輸入用戶地理信息特征值優(yōu)化個性化推薦效果,二值性和連續(xù)性特征值通過歸一化得到[0,1]范圍。其次,把所有輸入特征值拼接到同一個向量,并且把拼接后的向量輸予激活函數(shù)處理。最后,通過神經(jīng)網(wǎng)絡(luò)訓(xùn)練輸給Softmax進行分類,通過訓(xùn)練的特征與源項目進行相似度計算,獲取相似度最高的N個項目作為候選模塊中的候選集,圖2為候選生成結(jié)構(gòu)圖。

基于生成的候選集協(xié)同過濾提供廣泛的個性化,組合基于用戶-項目相關(guān)度評價實現(xiàn)精準(zhǔn)、實時、個性化推薦。

候選集生成部分是基于多源異構(gòu)數(shù)據(jù)庫中學(xué)習(xí)選擇與用戶相關(guān)度較高的項目,對于預(yù)測用戶U,其瀏覽某一個信息的概率為:

其中,U是用戶特征值,V表示多源異構(gòu)數(shù)據(jù)庫,vi表示數(shù)據(jù)庫中第i個項目的特征值,U與vi向量擁有相等長度,它兩通過點積在隱層全連接實現(xiàn)。

1.2 排序生成模塊

排序生成結(jié)構(gòu)與候選生成結(jié)構(gòu)類似,區(qū)別在于排序生成是對候選生成集升級細致分類排序。與傳統(tǒng)排序抽取特征值類似,神經(jīng)網(wǎng)絡(luò)排序也是通過拼接大量用戶、項目相關(guān)特征值(文本ID、瀏覽時長等)。特征值的處理與候選生成類似,都基于向量化,區(qū)別在于排序生成網(wǎng)絡(luò)最后通過加權(quán)邏輯回歸訓(xùn)練,給前期產(chǎn)生的候選集再評分,評分較高的K個項目返回給用戶或通過協(xié)同過濾實現(xiàn)個性化推薦[8-10]。圖3為排序生成結(jié)構(gòu)圖。

設(shè)定部分Softmax分類過程:首先,對于候選生成集或排序生成列表的訓(xùn)練過程,通過對負樣本類別采用實際類別計算將數(shù)量減小到數(shù)千;其次,在推薦階段,不計Softmax歸一化,將項目評分轉(zhuǎn)化為點積空間的最近鄰尋找或協(xié)同過濾根據(jù)相關(guān)度計算;最后,選取與用戶U相關(guān)度最高的K項作為候選集或排序列表,然后通過協(xié)同過濾個性化推薦,把信息推薦給用戶。

1.3 多用戶—項目模型

基于多用戶、多項目的多源異構(gòu)特征結(jié)合兩次深度神經(jīng)網(wǎng)絡(luò)學(xué)習(xí),從而實現(xiàn)個性化推薦。其實現(xiàn)思想為:首先,將原始特征值向量化后映射為用戶、項目兩個通道;然后利用深度神經(jīng)網(wǎng)絡(luò)模型把用戶、項目信息向量映射到一個隱空間;最后,通過評估相似度(如余弦相似度法)把隱空間的用戶、項目進行相關(guān)度等排名、匹配,從而實現(xiàn)精準(zhǔn)、個性化推薦。圖4為多用戶-項目DNN(Deep Neural Network)模型結(jié)構(gòu)[11-12]。

在用戶視角,利用其瀏覽歷史、搜索(Search tokens)、位置信息、二值性(登錄與否、性別)和連續(xù)性(年齡)、觀看時長等作為源特征值輸入xu,然后通過深度神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)模型學(xué)習(xí)輸出隱表示yu。在項目視角,利用項目的描述、標(biāo)簽、類型等作為源特征值輸入xi,通過深度神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)模型學(xué)習(xí)輸出隱表示yi,其中模型擁有多個用戶、項目,分別為m、N。用戶視角DNN模型為fu(xu,wu),第i個項目視角DNN模型為fi(xi,wi)。若擁有M個樣本{(xu,j,xa,j)},0≤j≤M,(xu,j,xa,j)是用戶u與項目a的交互,利用用戶、項目的擬合交互記錄進行調(diào)參學(xué)習(xí):

通過模型訓(xùn)練、學(xué)習(xí)之后獲得的用戶隱表示yu與項目隱表示yi,利用在隱空間中計算用戶與項目的相關(guān)度、排名,選擇相關(guān)度排序較高的k項目以及源數(shù)據(jù)庫協(xié)同過濾實現(xiàn)精準(zhǔn)、個性化推薦。

1.4 特征值向量化

特征值向量化是通過詞組嵌入,將特制文本映射到w維空間向量。首先,把用戶、項目所有相關(guān)聯(lián)特征值分別合并,并對特征值量化為評分?jǐn)?shù)據(jù)然后求其平均值,即對多源異構(gòu)原始數(shù)據(jù)進行評分式數(shù)據(jù)處理及歸一化。

(1)用戶特征數(shù)據(jù)為:

1.5 全連接層

全連接層(隱層)輸入數(shù)據(jù)為用戶、項目源特征值向量化后的值,設(shè)隱含層共m個神經(jīng)元,通過隱含層ReLU激活函數(shù)處理后,獲得向量ui,就是用戶useri隱特征值,同理,項目itemj的隱特征值向量為vj,計算過程如下:

1.6 矩陣分解

最后,利用Adam深度學(xué)習(xí)優(yōu)化方式對預(yù)測與真實評分進行擬合[13],對于一些擁有評分的項目,使預(yù)測最大可能接近真實,由此學(xué)習(xí)推薦,對新物品實現(xiàn)個性化推薦(未評分項目預(yù)測真實評分無限接近預(yù)測值)。

2 實驗仿真及分析

2.1 實驗環(huán)境

算法性能分析的實驗環(huán)境以Windows Server2012 R2操作系統(tǒng)為實驗支撐,相關(guān)配置為:Intel Xeon Silver 4116 CPU處理器,編程語言Python,128 GB內(nèi)存,雙GPU。編譯環(huán)境在Anaconda的Jupyter Notebook中實現(xiàn)并采用MATLAB進行仿真。

2.2 數(shù)據(jù)集合

本文通過2個真實、實時數(shù)據(jù)集,對深度神經(jīng)網(wǎng)絡(luò)融合協(xié)同過濾推薦模型進行評估,數(shù)據(jù)集分別為Amazon Movies and TV(AMT)評論評分與Amazon Clothing(AC)視頻評論、評分。數(shù)據(jù)包括用戶ID、物品ID及用戶評論、評分。評分值為1~5,值越大用戶喜好度越高。同時,實驗數(shù)據(jù)按需求進行訓(xùn)練集TrainSet與測驗集TestSet劃分,且二者沒有交集。

2.3 評價標(biāo)準(zhǔn)

本文提出的深度神經(jīng)網(wǎng)絡(luò)融合協(xié)同過濾推薦模型通過用戶與項目的各類歷史記錄中抽取隱特征,然后對特征值進行學(xué)習(xí)預(yù)判、排序。因此本文應(yīng)用均方根誤差(RMSE)作為評價此模型的指標(biāo),通過學(xué)習(xí)特征模型與真實特征計算偏差,并求平方,然后與預(yù)測數(shù)據(jù)量N做比值平方根,計算公式如下:

2.4 實驗對比

實驗通過3個有效模型進行比較,分別為ProbabilisTIc Matrix Factorization(PMF)、LibMF和DNNMF。

2.5 執(zhí)行時間對比分析

深度神經(jīng)網(wǎng)絡(luò)(DNN)推薦算法與傳統(tǒng)協(xié)同過濾(CF)運行時間對比:實驗處理數(shù)據(jù)為AMT、AC真實數(shù)據(jù),大小為1.88 GB。深度神經(jīng)網(wǎng)絡(luò)輸入節(jié)點為1 024個,隱含層18個,輸出節(jié)點1 024個,Spark集群節(jié)點為3,比較深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練與傳統(tǒng)協(xié)同過濾處理數(shù)據(jù)集的耗時。實驗結(jié)果如圖5所示,其中user表示用戶測試數(shù)據(jù)集耗時,item表示商品測試數(shù)據(jù)集耗時。顯然,DNN執(zhí)行效率更高。

2.6 實驗結(jié)果與分析

實驗在2個真實數(shù)據(jù)集下通過本文提出的MV-CFi-DNN模型進行計算評估,同時用RMSE來對模型進行評估預(yù)測,在相同實驗環(huán)境與同一數(shù)據(jù)前提下,將MV-CFi-DNN與PMF、LibMF做比較分析。

參數(shù)設(shè)置為:用戶、項目特征值權(quán)重分別為α=1,β=0.5,MV-CFiDNN模型學(xué)習(xí)率為lr=0.000 65,用戶、項目隱特征正則化為λuser=λitem=λ,深度神經(jīng)網(wǎng)絡(luò)神經(jīng)元數(shù)為1 026個。

為了將MV-CFiDNN模型與PMF、LibMF模型對比,把2個真實數(shù)據(jù)集隨機分為80%的TrainSet與20%的TestSet,且兩者沒有交集,同時把TestSet中的20%數(shù)據(jù)集隨機用于驗證,用來調(diào)整模型參數(shù)。

從圖6可知,通過在2個真實數(shù)據(jù)集中測試后,PMF、LibMF的RMSE值相差不大,但與MV-CFiDNN模型的RMSE值有一定差異,表明深度神經(jīng)網(wǎng)絡(luò)融合多用戶-項目、協(xié)同過濾模型對于特征值抽取有很好效果。通過實驗結(jié)果可以看出,本文提出的深度神經(jīng)網(wǎng)絡(luò)融合多用戶-項目協(xié)同過濾模型(MV-CFiDNN)的RMSE值與PMF、LibMF模型比較,都有下降,說明MV-CFiDNN模型能夠解決傳統(tǒng)算法模型的稀疏性、新物品等問題。

本站聲明: 本文章由作者或相關(guān)機構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內(nèi)容真實性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動電源

在工業(yè)自動化蓬勃發(fā)展的當(dāng)下,工業(yè)電機作為核心動力設(shè)備,其驅(qū)動電源的性能直接關(guān)系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅(qū)動電源設(shè)計中至關(guān)重要的兩個環(huán)節(jié),集成化方案的設(shè)計成為提升電機驅(qū)動性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機 驅(qū)動電源

LED 驅(qū)動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設(shè)備的使用壽命。然而,在實際應(yīng)用中,LED 驅(qū)動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設(shè)計、生...

關(guān)鍵字: 驅(qū)動電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動電源的公式,電感內(nèi)電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計 驅(qū)動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術(shù)之一是電機驅(qū)動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅(qū)動系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動汽車的動力性能和...

關(guān)鍵字: 電動汽車 新能源 驅(qū)動電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動電源 LED

LED通用照明設(shè)計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅(qū)動電源

關(guān)鍵字: LED 驅(qū)動電源 開關(guān)電源

LED驅(qū)動電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動電源
關(guān)閉