日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 智能硬件 > 機器人
[導讀]  ETRobot Maid Cleans Up After Your Mess A robot places an item in a refrigerator. C

 ETRobot Maid Cleans Up After Your Mess

A robot places an item in a refrigerator. Credit: Saxena Lab View full size image

Robots could soon play maid and butler in homes, with a droid now programmed to scan a messy room, idenTIfy all items, figure out where they belong and put them back in place.

Such robots also could help pack warehouses and clean up auto repair shops, researchers say.

Previously scienTIsts had developed robots that can grasp objects, but when it came to putTIng them back down again, the machines could place only single items down on flat surfaces. Now researchers are developing machines that can survey a group of things and place them in complex 3D spaces.

[Where‘s My Robot Maid?]

The robot, which has a single mechanical arm, surveys objects in rooms by using a Microsoft Kinect camera, which is equipped with an infrared scanner to help create 3D models of items. The Kinect was originally developed for video gaming but is being widely used by roboTIcists to help robots navigate rooms.

The droid weaves together many images to create an overall picture of a room. It then divides this view into blocks depending on their color and shape. The machine then computes how likely any block it sees is a given object. It then decides on an appropriate home for the item, creates a 3D model of the target space, and puts the object in that place, taking into account the shapes of both the item and the space for a stable placement.

(Before the exercise, the robot is shown examples of various kinds of items, such as books, to learn what characteristics they might have in common. The droid is also shown some examples of where to place objects beforehand, and from it learns where similar objects might or might not go, such as knowing not to put shoes in the refrigerator.)

The researchers’ robot tidied up dishes, books, egg cartons, toys, clothing and other items — 98 objects in all — by placing them in 40 areas, such as bookshelves, dish racks, refrigerators, closets and on tables.

The robot proved up to 98 percent successful in recognizing and correctly putting away objects it had seen before.

“How can you possibly imagine that if a robot has neither seen a martini glass nor the stemware holder before, it would be able to put it away?” said researcher Ashutosh Saxena, a roboticist at Cornell University. “We show that it puts it away successfully — a hard task to do.”

“It learned the common-sense physics principles of stability,” Saxena told InnovationNewsDaily. “Learning these underlying principles from data allowed it to handle and adapt to new situations.”

[Americans Willing to Pay for Laundry-Folding Robots]

The robot was also capable of placing objects it had never seen before, but success rates fell to an average of 82 percent. Objects that were most often misidentified had ambiguous shapes — for instance, clothing and shoes. In addition, “perceiving whether a beer bottle is full or empty is hard, and therefore it has never quite figured out what to do with beer bottles — it just throws all of them into the recycling bin, empty or full, for now,” Saxena said.

The world already has vacuum cleaner robots, with more than 8 million Roombas sold, and “very soon, I think two to four years, we‘ll see more capable robots — for example, a 2-foot-tall robot with a small arm that not only vacuums the floor, but also picks up and places things on the side,” Saxena said. He noted his team will soon have such mobile robots that they can program with their algorithms.

Still, “this work is only a first step towards a cleaning and house-arranging robot,” Saxena said. “A lot needs to be done before this robot could be useful. Would you be happy if it breaks one out of five glasses? No. What about one in 50? Maybe. Breaking only one in 5,000 would be really awesome. However, it takes a lot to go from 1 in 50, where we are now, to breaking only 1 in 5,000.”

The researchers hope to improve the robot with higher-resolution cameras. Tactile sensors in the droid’s hand also could help it know whether an object is in a stable position and can be released.

The machine also could be programmed to understand the preferences in which objects should belong — for instance, the TV remote control ideally would go next to the sofa in front of the TV.

Saxena and his colleagues detailed their findings online in the May issue of the International Journal of Robotics.

This story was provided by InnovationNewsDaily, a sister site to LiveScience. Follow InnovationNewsDaily on Twitter @News_Innovation, or on Facebook.

自動翻譯僅供參考

機器人女仆能夠幫助清理殘局 Robot女仆清理后你

機器人在冰箱中放置一個項目。

機器人可能很快發(fā)揮女傭和管家的家庭,有一個機器人,現(xiàn)在編程掃描凌亂的房間,發(fā)現(xiàn)所有的項目,找出屬于他們的地方,并把它們放回原處。

這樣的機器人還可以幫助包裝倉庫,清理汽車修理店,研究人員說。

此前科學家已經(jīng)開發(fā)機器人,可以抓住物體,但是當它來重新把它們背下來,該機器可以向下放置在平面上只單品?,F(xiàn)在,研究人員正在開發(fā)的機器,可以探測一組東西中,并放置在復雜的三維空間。

[哪里是我的機器人女仆?Where‘s My Robot Maid?微軟Kinect攝像頭,配備了一個紅外掃描儀,以幫助創(chuàng)建項目的3D模型。 Kinect的最初是為視頻游戲,但正在被廣泛使用的機器人專家來幫助機器人導航室。

Droid的交織在一起的許多圖像來創(chuàng)建一個房間的全貌。然后,它把這個觀點成為這取決于它們的顏色和形狀的塊。該機然后計算怎么可能它看到任何塊是一個給定的對象。然后,它決定在適當?shù)募覟轫?,?chuàng)建目標空間的3D模型,并將該對象在該地方,考慮到兩者的項目和一個穩(wěn)定放置。

的空間內的形狀(前各種物品,如書籍的運動,機器人所示的例子,來學習他們可能有共同的哪些特點的機器人也顯示了在那里事先放置物品的一些例子,并從中學習有類似的對象可能或,可能不會去,如明知不可把鞋子放在冰箱里)

研究人員的機器人收拾餐具,書籍,蛋盒,玩具,服裝等物品— 98物體在所有的—通過將它們在40個地區(qū),如書架,菜架,冰箱,衣柜和桌子上。

機器人證明高達98%的成功識別并正確地收拾它。

u0026 以前見過的對象,你怎么能這樣可能想像,如果一個機器人既沒有看到一個馬提尼酒杯,也沒有之前的高腳杯持有人,這將是能夠把它扔掉 ?;研究人員說,Ashutosh說Saxena先生,一個機器人專家在康奈爾大學。 我們發(fā)現(xiàn),它把它扔掉成功—一個硬任務來完成 。

學到穩(wěn)定的常識性的物理學原理, Saxena先生告訴InnovationNewsDaily。 從數(shù)據(jù)中學習這些基本原則,允許它來處理,并適應新的形勢和 ;

美國人愿意支付洗衣,折疊機器人Americans Willing to Pay for Laundry-Folding Robots成功率下降到平均82%。對象是最經(jīng)常誤了曖昧的形狀—例如,衣服和鞋子。此外, 感知一個啤酒瓶是否滿或空是很難的,因此它從來沒有完全想通了,做什么用啤酒瓶—它只是拋出所有的人都變成了回收站,空或滿,就目前而言, Saxena先生說。

世界上已經(jīng)有吸塵器機器人,擁有超過800萬Roombas銷售,并與 ;很快,我覺得兩到四年,我們將看到更強大的機器人—例如,一個2英尺高的機器人用小臂,不僅吸塵地板上,而且拾取并放置東西的一側, Saxena先生說。他指出,他的團隊很快就會有這樣的移動機器人,他們可以用自己的算法編程。

但是, 這項工作是邁向清潔和房子安排機器人, 只是第一步; Saxena先生說。 需要大量的工作要做在此之前的機器人可能是有用的。你會很高興,如果它打破了五分之一的眼鏡?什么號大約每50?有可能。打破只有5000人會真正真棒。然而,這需要大量的從1到去50,我們現(xiàn)在的情況,僅1 5000突破和 ;

研究人員希望改善與更高分辨率的攝像頭的機器人。在機器人的手觸覺傳感器也可以幫助它知道一個對象是否處于穩(wěn)定的位置,并且可以釋放。

該機還可以進行編程,以了解哪些對象應該屬于&mdash的偏好;例如,電視遙控器理想是去旁邊的沙發(fā)在電視。

Saxena先生和他的同事在五月發(fā)行的機器人,國際在線雜志詳細介紹了他們的發(fā)現(xiàn)對前

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據(jù)LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數(shù)校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉