日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁 > 智能硬件 > 人工智能AI
[導(dǎo)讀] 神經(jīng)網(wǎng)絡(luò)基本概念 (1)激勵(lì)函數(shù): 例如一個(gè)神經(jīng)元對貓的眼睛敏感,那當(dāng)它看到貓的眼睛的時(shí)候,就被激勵(lì)了,相應(yīng)的參數(shù)就會(huì)被調(diào)優(yōu),它的貢獻(xiàn)就會(huì)越大。 下面是幾種常見的激活函數(shù)

神經(jīng)網(wǎng)絡(luò)基本概念 (1)激勵(lì)函數(shù):

例如一個(gè)神經(jīng)元對貓的眼睛敏感,那當(dāng)它看到貓的眼睛的時(shí)候,就被激勵(lì)了,相應(yīng)的參數(shù)就會(huì)被調(diào)優(yōu),它的貢獻(xiàn)就會(huì)越大。

下面是幾種常見的激活函數(shù):

x軸表示傳遞過來的值,y軸表示它傳遞出去的值:

 

激勵(lì)函數(shù)在預(yù)測層,判斷哪些值要被送到預(yù)測結(jié)果那里:

 

TensorFlow 常用的 acTIvaTIon funcTIon

(2)添加神經(jīng)層:

輸入?yún)?shù)有 inputs, in_size, out_size, 和 acTIvation_function

分類問題的 loss 函數(shù) cross_entropy :

 

overfitting:

下面第三個(gè)圖就是 overfitting,就是過度準(zhǔn)確地?cái)M合了歷史數(shù)據(jù),而對新數(shù)據(jù)預(yù)測時(shí)就會(huì)有很大誤差:

Tensorflow 有一個(gè)很好的工具, 叫做dropout, 只需要給予它一個(gè)不被 drop 掉的百分比,就能很好地降低 overfitting。

dropout 是指在深度學(xué)習(xí)網(wǎng)絡(luò)的訓(xùn)練過程中,按照一定的概率將一部分神經(jīng)網(wǎng)絡(luò)單元暫時(shí)從網(wǎng)絡(luò)中丟棄,相當(dāng)于從原始的網(wǎng)絡(luò)中找到一個(gè)更瘦的網(wǎng)絡(luò),這篇博客中講的非常詳細(xì)

 

 

5. 可視化 Tensorboard

Tensorflow 自帶 tensorboard ,可以自動(dòng)顯示我們所建造的神經(jīng)網(wǎng)絡(luò)流程圖:

 

就是用 with tf.name_scope 定義各個(gè)框架,注意看代碼注釋中的區(qū)別:

import tensorflow as tf

def add_layer(inputs, in_size, out_size, activation_function=None):

# add one more layer and return the output of this layer

# 區(qū)別:大框架,定義層 layer,里面有 小部件

with tf.name_scope(‘layer’):

# 區(qū)別:小部件

with tf.name_scope(‘weights’):

Weights = tf.Variable(tf.random_normal([in_size, out_size]), name=‘W’)

with tf.name_scope(‘biases’):

biases = tf.Variable(tf.zeros([1, out_size]) + 0.1, name=‘b’)

with tf.name_scope(‘Wx_plus_b’):

Wx_plus_b = tf.add(tf.matmul(inputs, Weights), biases)

if activation_function is None:

outputs = Wx_plus_b

else:

outputs = activation_function(Wx_plus_b, )

return outputs

# define placeholder for inputs to network

# 區(qū)別:大框架,里面有 inputs x,y

with tf.name_scope(‘inputs’):

xs = tf.placeholder(tf.float32, [None, 1], name=‘x_input’)

ys = tf.placeholder(tf.float32, [None, 1], name=‘y_input’)

# add hidden layer

l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)

# add output layer

prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediciton and real data

# 區(qū)別:定義框架 loss

with tf.name_scope(‘loss’):

loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),

reduction_indices=[1]))

# 區(qū)別:定義框架 train

with tf.name_scope(‘train’):

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

sess = tf.Session()

# 區(qū)別:sess.graph 把所有框架加載到一個(gè)文件中放到文件夾“logs/”里

# 接著打開terminal,進(jìn)入你存放的文件夾地址上一層,運(yùn)行命令 tensorboard --logdir=‘logs/’

# 會(huì)返回一個(gè)地址,然后用瀏覽器打開這個(gè)地址,在 graph 標(biāo)簽欄下打開

writer = tf.train.SummaryWriter(“logs/”, sess.graph)

# important step

sess.run(tf.initialize_all_variables())

運(yùn)行完上面代碼后,打開 terminal,進(jìn)入你存放的文件夾地址上一層,運(yùn)行命令 tensorboard --logdir=‘logs/’ 后會(huì)返回一個(gè)地址,然后用瀏覽器打開這個(gè)地址,點(diǎn)擊 graph 標(biāo)簽欄下就可以看到流程圖了

6. 保存和加載訓(xùn)練好了一個(gè)神經(jīng)網(wǎng)絡(luò)后,可以保存起來下次使用時(shí)再次加載:import tensorflow as tf

import numpy as np

## Save to file

# remember to define the same dtype and shape when restore

W = tf.Variable([[1,2,3],[3,4,5]], dtype=tf.float32, name=‘weights’)

b = tf.Variable([[1,2,3]], dtype=tf.float32, name=‘biases’)

init= tf.initialize_all_variables()

saver = tf.train.Saver()

# 用 saver 將所有的 variable 保存到定義的路徑

with tf.Session() as sess:

sess.run(init)

save_path = saver.save(sess, “my_net/save_net.ckpt”)

print(“Save to path: ”, save_path)

################################################

# restore variables

# redefine the same shape and same type for your variables

W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.float32, name=“weights”)

b = tf.Variable(np.arange(3).reshape((1, 3)), dtype=tf.float32, name=“biases”)

# not need init step

saver = tf.train.Saver()

# 用 saver 從路徑中將 save_net.ckpt 保存的 W 和 b restore 進(jìn)來

with tf.Session() as sess:

saver.restore(sess, “my_net/save_net.ckpt”)

print(“weights:”, sess.run(W))

print(“biases:”, sess.run(b))

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢抑制與過流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問題卻十分常見,不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開關(guān)電源具有效率高的特性,而且開關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉