日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 嵌入式 > 嵌入式云IOT技術圈
[導讀]任何對時間要求苛刻的需求都是我們的敵人,在必要的時候我們只有增加硬件成本來消滅它;比如你要8個數碼管來顯示,我們在沒有相關的硬件支持的時候必須用MCU以動態(tài)掃描的方式來使其工作良好;而動態(tài)掃描將或多或少的阻止了MCU處理其他的事情。在MCU負擔很重的

任何對時間要求苛刻的需求都是我們的敵人,在必要的時候我們只有增加硬件成本來消滅它;比如你要8個數碼管來顯示,我們在沒有相關的硬件支持的時候必須用MCU以動態(tài)掃描的方式來使其工作良好;而動態(tài)掃描將或多或少的阻止了MCU處理其他的事情。在MCU負擔很重的場合,我會選擇選用一個類似max8279外圍ic來解決這個困擾;然而慶幸的是,有著許多不是對時間要求苛刻的事情:例如鍵盤的掃描,人們敲擊鍵盤的速率是有限的,我們無需實時掃描著鍵盤,甚至可以每隔幾十ms才去掃描一下;然而這個幾十ms的間隔,我們的MCU還可以完成許多的事情;

單片機雖然是裸機奔跑,但是往往現實的需要決定了我們必須跑出操作系統(tǒng)的姿態(tài)——多任務程序;比如一個常用的情況有4個任務:

  • 1.鍵盤掃描;
  • 2.led數碼管顯示;
  • 3.串口數據需要接受和處理;
  • 4.串口需要發(fā)送數據;如何來構架這個單片機的程序將是我們的重點;

讀書時代的我會把鍵盤掃描用查詢的方式放在主循環(huán)中,而串口接收數據用中斷,在中斷服務函數中組成相應的幀格式后置位相應的標志位,在主函數的循環(huán)中進行數據的處理,串口發(fā)送數據以及l(fā)ed的顯示也放在主循環(huán)中;

這樣整個程序就以標志變量的通信方式,相互配合的在主循環(huán)和后臺中斷中執(zhí)行;然而必須指出其不妥之處:

每個任務的時間片可能過長,這將導致程序的實時性能差。如果以這樣的方式在多加幾個任務,使得一個循環(huán)的時間過長,可能鍵盤掃描將很不靈敏。所以若要建立一個良好的通用編程模型,我們必須想辦法,消去每個任務中費時間的部分以及把每個任務再次分解;下面來細談每個任務的具體措施:

1 鍵盤掃描

鍵盤掃描是單片機的常用函數,以下指出常用的鍵盤掃描程序中,嚴重阻礙系統(tǒng)實時性能的地方;眾所周知,一個鍵按下之后的波形是這樣的(假定低有效):在有鍵按下后,數據線上的信號出現一段時間的抖動,然后為低,然后當按鍵釋放時,信號抖動一段時間后變高。當然,在數據線為低或者為高的過程中,都有可能出現一些很窄的干擾信號。

unsigned char kbscan(void)
{
unsigned char sccode,recode;
P2=0xf8;
if ((P2&0xf8)!=0xf8)
{
delay(100); //延時20ms去抖--------這里太費時了,很糟糕
if((P2&0xf8)!=0xf8)
{
sccode=0xfe;
while((sccode&0x08)!=0)
{
P2=sccode;
if ((P2&0xf8)!=0xf8)
break;
sccode=(sccode<<1)|0x01;

}
recode=(P2&0xf8)|0x0f;
return(sccode&recode);
}
}
return (KEY_NONE);
}

鍵盤掃描是需要軟件去抖的,這沒有爭議,然而該函數中用軟件延時來去抖(ms級別的延時),這是一個維持系統(tǒng)實時性能的一個大忌諱;一般還有一個判斷按鍵釋放的代碼:

While( kbscan() != KEY_NONE)
; //死循環(huán)等待

這樣很糟糕,如果把鍵盤按下一直不放,這將導致整個系統(tǒng)其它的任務也不能執(zhí)行,這將是個很嚴重的bug。有人會這樣進行處理:

While(kbsan() != KEY_NONE )
{
Delay(10);
If(Num++ > 10)
Break;
}

即在一定時間內,如果鍵盤一直按下,將作為有效鍵處理。這樣雖然不導致整個系統(tǒng)其它任務不能運行,但也很大程度上,削弱了系統(tǒng)的實時性能,因為用了延時函數;

我們用兩種有效的方法來解決此問題:

第一,在按鍵功能比較簡單的情況下,我們仍然用上面的kbscan()函數進行掃描,只是把其中去抖用的軟件延時去了,把去抖以及判斷按鍵的釋放用一個函數來處理,它不用軟件延時,而是用定時器的計時(用一般的計時也行)來完成;代碼如下

void ClearKeyFlag(void)
{
KeyDebounce標志寄存器 = 0;
KeyRelease標志寄存器 = 0;
}
void ScanKey(void)
{
++KeyDebounceCnt;//去抖計時(這個計時也可以放在后臺定時器計時函數中處理)
KeyCode = kbscan();
if (KeyCode != KEY_NONE)
{
if (KeyDebounce標志寄存器)//進入去抖狀態(tài)的標志位
{
if (KeyDebounceCnt > DEBOUNCE_TIME)//大于了去抖規(guī)定的時間
{
if (KeyCode == KeyOldCode)//按鍵依然存在,則返回鍵值
{
KeyDebounce標志寄存器 = 0;
KeyRelease標志寄存器 = 1;//釋放標志
return; //Here exit with keycode
}
ClearKeyFlag(); //KeyCode != KeyOldCode,只是抖動而已
}
}
else
{
if (KeyRelease標志寄存器 == 0)
{
KeyOldCode = KeyCode;
KeyDebounce標志寄存器 = 1;
KeyDebounceCnt = 0;
}
else
{
if (KeyCode != KeyOldCode)
ClearKeyFlag();
}
}
}else
{
ClearKeyFlag();//沒有按鍵則清零標志
}
KeyCode = KEY_NONE;
}

第二,在按鍵情況較復雜的情況,如有長按鍵,組合鍵,連鍵等一些復雜功能的按鍵時候,我們傾向于用狀態(tài)機來實現鍵盤的掃描;

//avr 單片機 中4*3掃描狀態(tài)機實現
char read_keyboard_FUN2()
{
static char key_state = 0, key_value, key_line,key_time;
char key_return = No_key,i;
switch (key_state)
{
case 0: //最初的狀態(tài),進行3*4的鍵盤掃描
key_line = 0b00001000;
for (i=1; i<=4; i++) // 掃描鍵盤
{
PORTD = ~key_line; // 輸出行線電平
PORTD = ~key_line; // 必須送2次?。。。ㄗ?)
key_value = Key_mask & PIND; // 讀列電平
if (key_value == Key_mask)
key_line <<= 1; // 沒有按鍵,繼續(xù)掃描
else
{
key_state++; // 有按鍵,停止掃描
break; // 轉消抖確認狀態(tài)
}
}
break;
case 1: //此狀態(tài)來判斷按鍵是不是抖動引起的
if (key_value == (Key_mask & PIND)) // 再次讀列電平,
{
key_state++; // 轉入等待按鍵釋放狀態(tài)
key_time=0;
}
else
key_state--; // 兩次列電平不同返回狀態(tài)0,(消抖處理)
break;
case 2: // 等待按鍵釋放狀態(tài)
PORTD = 0b00000111; // 行線全部輸出低電平
PORTD = 0b00000111; // 重復送一次
if ( (Key_mask & PIND) == Key_mask)
{
key_state=0; // 列線全部為高電平返回狀態(tài)0
key_return= (key_line | key_value);//獲得了鍵值
}
else if(++key_time>=100)//如果長時間沒有釋放
{
key_time=0;
key_state=3;//進入連鍵狀態(tài)
key_return= (key_line | key_value);
}
break;
case 3://對于連鍵,每隔50ms就得到一次鍵值,windows xp 系統(tǒng)就是這樣做的
PORTD = 0b00000111; // 行線全部輸出低電平
PORTD = 0b00000111; // 重復送一次
if ( (Key_mask & PIND) == Key_mask)
key_state=0; // 列線全部為高電平返回狀態(tài)0
else if(++key_time>=5) //每隔50MS為一次連擊的按鍵
{
key_time=0;
key_return= (key_line | key_value);
}
break;
}
return key_return;
}

以上用了4個狀態(tài),一般的鍵盤掃描只用前面3個狀態(tài)就可以了,后面一個狀態(tài)是為增加“連鍵”功能設計的。連鍵——即如果按下某個鍵不放,則迅速的多次響應該鍵值,直到其釋放。在主循環(huán)中每隔10ms讓該鍵盤掃描函數執(zhí)行一次即可;我們定其時限為10ms,當然要求并不嚴格。

2 數碼管的顯示

一般情況下我們用的八位一體的數碼管,采用動態(tài)掃描的方法來完成顯示;非常慶幸人眼在高于50hz以上的閃爍時發(fā)現不了的。所以我們在動態(tài)掃描數碼管的間隔時間是充裕的。這里我們定其時限為4ms(250HZ) ,用定時器定時為2ms,在定時中斷程序中進行掃描的顯示,每次只顯示其中的一位;當然時限也可以弄長一些,更推薦的方法是把顯示函數放入主循環(huán)中,而定時中斷中置位相應的標志位即可;

// Timer 0 比較匹配中斷服務,4ms定時
interrupt [TIM0_COMP] void timer0_comp_isr(void)
{
display(); // 調用LED掃描顯示
……………………
}
void display(void) // 8位LED數碼管動態(tài)掃描函數
{
PORTC = 0xff; // 這里把段選都關閉是很必要的,否則數碼管會產生拖影
PORTA = led_7[dis_buff[posit]];
PORTC = position[posit];
if (++posit >=8 )
posit = 0;
}

3 串口接收數據幀

串口接收時用中斷方式的,這無可厚非。但如果你試圖在中斷服務程序中完成一幀數據的接收就麻煩大了。永遠記住,中斷服務函數越短越好,否則影響這個程序的實時性能。一個數據幀一般包括若干個字節(jié),我們需要判斷一幀是否完成,校驗是否正確。在這個過程中我們不能用軟件延時,更不能用死循環(huán)等待等方式;所以我們在串口接收中斷函數中,只是把數據放置于一個緩沖隊列中。至于組成幀,以及檢查幀的工作我們在主循環(huán)中解決,并且每次循環(huán)中我們只處理一個數據,每個字節(jié)數據的處理間隔的彈性比較大,因為我們已經緩存在了隊列里面。

/*==========================================
功能:串口發(fā)送接收的時間事件
說明:放在大循環(huán)中每10ms一次
輸出:none
輸入:none
==========================================*/
void UARTimeEvent(void)
{
if (TxTimer != 0)//發(fā)送需要等待的時間遞減
--TxTimer;
if (++RxTimer > RX_FRAME_RESET) //
RxCnt = 0; //如果接受超時(即不完整的幀或者接收一幀完成),把接收的不完整幀覆蓋
}
/*==========================================
功能:串口接收中斷
說明:接收一個數據,存入緩存
輸出:none
輸入:none
==========================================*/
interrupt [USART_RXC] void uart_rx_isr(void)
{
INT8U status,data;
status = UCSRA;
data = UDR;
if ((status & (FRAMING_ERROR | PARITY_ERROR | DATA_OVERRUN))==0){
RxBuf[RxBufWrIdx] = data;
if (++RxBufWrIdx == RX_BUFFER_SIZE) //接收數據于緩沖中
RxBufWrIdx = 0;
if (++RxBufCnt == RX_BUFFER_SIZE){
RxBufCnt = 0;
//RxBufferOvf=1;
}
}
}

/*==========================================
功能:串口接收數據幀
說明:當非0輸出時,收到一幀數據
放在大循環(huán)中執(zhí)行
輸出:==0:沒有數據幀
!=0:數據幀命令字
輸入:none
==========================================*/
INT8U ChkRxFrame(void)
{
INT8U dat;
INT8U cnt;
INT8U sum;
INT8U ret;
ret = RX_NULL;
if (RxBufCnt != 0)
{
RxTimer = 0; //清接收計數時間,UARTimeEvent()中對于接收超時做了放棄整幀數據的處理
//Display();
cnt = RxCnt;
dat = RxBuf[RxBufRdIdx];// Get Char
if (++RxBufRdIdx == RX_BUFFER_SIZE)
RxBufRdIdx = 0;
Cli();
--RxBufCnt;
Sei();
FrameBuf[cnt++] = dat;
if (cnt >= FRAME_LEN)// 組成一幀
{
sum = 0;
for (cnt = 0;cnt < (FRAME_LEN - 1);cnt++)
sum+= FrameBuf[cnt];
if (sum == dat)
ret = FrameBuf[0];
cnt = 0;
}
RxCnt = cnt;
}
return ret;
}

以上的代碼ChkRxFrame()可以放于串口接收數據處理函數RxProcess() 中,然后放入主循環(huán)中執(zhí)行即可。以上用一個計時變量RxTimer,很微妙的解決了接收幀超時的放棄幀處理,它沒有用任何等待,而且主循環(huán)中每次只是接收一個字節(jié)數據,時間很短。

我們開始架構整個系統(tǒng)的框架:

我們選用一個系統(tǒng)不常用的TIMER來產生系統(tǒng)所需的系統(tǒng)基準節(jié)拍,這里我們選用4ms;在meg8中我們代碼如下:

// Timer 0 overflow interrupt service routine
interrupt [TIM0_OVF] void timer0_ovf_isr(void)
{
// Reinitialize Timer 0 value
TCNT0=0x83;
// Place your code here
if ((++Time1ms & 0x03) == 0)
TimeInt標志寄存器 = 1;
}

然后我們設計一個TimeEvent()函數,來調用一些在以指定的頻率需要循環(huán)調用的函數, 比如每個4ms我們就進行喂狗以及數碼管動態(tài)掃描顯示,每隔1s我們就調用led閃爍程序,每隔20ms我們進行鍵盤掃描程序;

void TimeEvent (void)
{
if (TimeInt標志寄存器){
TimeInt標志寄存器 = 0;
ClearWatchDog();
display(); // 在4ms事件中,調用LED掃描顯示,以及喂狗
if (++Time4ms > 5){
Time4ms = 0;
TimeEvent20ms();//在20ms事件中,我們處理鍵盤掃描read_keyboard_FUN2()

if (++Time100ms > 10){
Time100ms = 0;
TimeEvent1Hz();// 在1s事件中,我們使工作指示燈閃爍
}
}
UARTimeEvent();//串口的數據接收事件,在4ms事件中處理
}
}

顯然整個思路已經很清晰了,cpu需要處理的循環(huán)事件都可以根據其對于時間的要求很方便的加入該函數中。但是我們對這事件有要求:執(zhí)行速度快,簡短,不能有太長的延時等待,其所有事件一次執(zhí)行時間和必須小于系統(tǒng)的基準時間片4ms(根據需要可以加大系統(tǒng)基準節(jié)拍)。所以我們的鍵盤掃描程序,數碼管顯示程序,串口接收程序都如我先前所示。如果逼不得已需要用到較長的延時(如模擬IIc時序中用到的延時)我們設計了這樣的延時函數:

void RunTime250Hz (INT8U delay)//此延時函數的單位為4ms(系統(tǒng)基準節(jié)拍)
{
while (delay){
if (TimeInt標志寄存器){
--delay;
TimeEvent();
}
TxProcess();
RxProcess();
}
}

我們需要延時的時間=delay*系統(tǒng)記住節(jié)拍4ms,此函數就確保了在延時的同時,我們其它事件(鍵盤掃描,led顯示等)也并沒有被耽誤;好了這樣我們的主函數main()將很簡短:

Void main (voie)
{
Init_all();
while (1)
{
TimeEvent(); //對于循環(huán)事件的處理
RxProcess(); //串口對接收的數據處理
TxProcess();// 串口發(fā)送數據處理
}
}

整體看來我們的系統(tǒng)就成了將近一個萬能的模版了,根據自己所選的cpu,選個定時器,在添加自己的事件函數即可,非常靈活方便實用,一般的單片機能勝任的場合,該模版都能搞定。

整個系統(tǒng)以全局標志作為主線,形散神不散;系統(tǒng)耗費比較小,只是犧牲了一個Timer而已,在資源缺乏的單片機中,非常適;曾經看過一個網友的模版“單片機實用系統(tǒng)”,其以51為例子寫的,整體思路和這個差不多,不過他寫得更為規(guī)范緊湊,非常欣賞;但個人覺得代碼開銷量要大些,用慣了都一樣哦。但是由于本系統(tǒng)以全局標志為驅動事件,所以比較感覺比較凌亂,全局最好都做好注釋,而其要注意一些隱形的函數遞歸情況,千萬不要遞歸的太深哦(有的單片機不支持)。

往期精彩

數據結構之二叉樹

C語言將xxx.bin文件轉為數組

別瞎找了,你要的C語言經典示例都在這~

開源STM32產品:無線點菜寶使用評測

STM32CubeMX + STM32F1系列開發(fā)時遇到的四個問題及解決方案分享


若覺得本次分享的文章對您有幫助,隨手點[在看]并轉發(fā)分享,也是對我的支持。

免責聲明:本文內容由21ic獲得授權后發(fā)布,版權歸原作者所有,本平臺僅提供信息存儲服務。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯系我們,謝謝!

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯系該專欄作者,如若文章內容侵犯您的權益,請及時聯系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉