日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > > 架構師社區(qū)
[導讀]最近在學習Redis相關知識,看了阿里的redis開發(fā)規(guī)范,以及Redis開發(fā)與運維這本書。

前言

最近在學習Redis相關知識,看了阿里的redis開發(fā)規(guī)范,以及Redis開發(fā)與運維這本書。分使用規(guī)范、有坑的命令、項目實戰(zhàn)操作、運維配置四個方向,整理了使用Redis的21個注意點,希望對大家有幫助,一起學習哈

1、Redis的使用規(guī)范

1.1、 key的規(guī)范要點

我們設計Redis的key的時候,要注意以下這幾個點:

  • 以業(yè)務名為key前綴,用冒號隔開,以防止key沖突覆蓋。如,live:rank:1
  • 確保key的語義清晰的情況下,key的長度盡量小于30個字符。
  • key禁止包含特殊字符,如空格、換行、單雙引號以及其他轉義字符。
  • Redis的key盡量設置ttl,以保證不使用的Key能被及時清理或淘汰。

1.2、value的規(guī)范要點

Redis的value值不可以隨意設置的哦。

「第一點」,如果大量存儲bigKey是會有問題的,會導致慢查詢,內存增長過快等等。

  • 如果是String類型,單個value大小控制10k以內。
  • 如果是hash、list、set、zset類型,元素個數一般不超過5000。

「第二點」,要選擇適合的數據類型。不少小伙伴只用Redis的String類型,上來就是set和get。實際上,Redis 提供了「豐富的數據結構類型」,有些業(yè)務場景,更適合hash、zset等其他數據結果。

使用Redis,你必須知道的21個注意要點

「反例:」

set user:666:name jay set user:666:age 18

「正例」

hmset user:666 name jay age 18

1.3. 給Key設置過期時間,同時注意不同業(yè)務的key,盡量過期時間分散一點

  • 因為Redis的數據是存在內存中的,而內存資源是很寶貴的。
  • 我們一般是把Redis當做緩存來用,而 「不是數據庫」,所以key的生命周期就不宜太長久啦。
  • 因此,你的key,一般建議用 「expire設置過期時間」。

如果大量的key在某個時間點集中過期,到過期的那個時間點,Redis可能會存在卡頓,甚至出現(xiàn)「緩存雪崩」現(xiàn)象,因此一般不同業(yè)務的key,過期時間應該分散一些。有時候,同業(yè)務的,也可以在時間上加一個隨機值,讓過期時間分散一些。

1.4.建議使用批量操作提高效率

我們日常寫SQL的時候,都知道,批量操作效率會更高,一次更新50條,比循環(huán)50次,每次更新一條效率更高。其實Redis操作命令也是這個道理。

Redis客戶端執(zhí)行一次命令可分為4個過程:1.發(fā)送命令-> 2.命令排隊-> 3.命令執(zhí)行-> 4. 返回結果。1和4 稱為RRT(命令執(zhí)行往返時間)。Redis提供了「批量操作命令,如mget、mset」等,可有效節(jié)約RRT。但是呢,大部分的命令,是不支持批量操作的,比如hgetall,并沒有mhgetall存在。「Pipeline」 則可以解決這個問題。

Pipeline是什么呢?它能將一組Redis命令進行組裝,通過一次RTT傳輸給Redis,再將這組Redis命令的執(zhí)行結果按順序返回給客戶端.

我們先來看下沒有使用Pipeline執(zhí)行了n條命令的模型:

使用Redis,你必須知道的21個注意要點

使用Pipeline執(zhí)行了n次命令,整個過程需要1次RTT,模型如下:

使用Redis,你必須知道的21個注意要點

2、Redis 有坑的那些命令

2.1. 慎用O(n)復雜度命令,如hgetall、smember,lrange等

因為Redis是單線程執(zhí)行命令的。hgetall、smember等命令時間復雜度為O(n),當n持續(xù)增加時,會導致 Redis CPU 持續(xù)飆高,阻塞其他命令的執(zhí)行。

hgetall、smember,lrange等這些命令不是一定不能使用,需要綜合評估數據量,明確n的值,再去決定。比如hgetall,如果哈希元素n比較多的話,可以優(yōu)先考慮使用「hscan」。

2.2  慎用Redis的monitor命令

Redis Monitor 命令用于實時打印出Redis服務器接收到的命令,如果我們想知道客戶端對redis服務端做了哪些命令操作,就可以用Monitor 命令查看,但是它一般「調試」用而已,盡量不要在生產上用!因為「monitor命令可能導致redis的內存持續(xù)飆升?!?/span>

monitor的模型是醬紫的,它會將所有在Redis服務器執(zhí)行的命令進行輸出,一般來講Redis服務器的QPS是很高的,也就是如果執(zhí)行了monitor命令,Redis服務器在Monitor這個客戶端的輸出緩沖區(qū)又會有大量“存貨”,也就占用了大量Redis內存。

使用Redis,你必須知道的21個注意要點

2.3、生產環(huán)境不能使用 keys指令

Redis Keys 命令用于查找所有符合給定模式pattern的key。如果想查看Redis 某類型的key有多少個,不少小伙伴想到用keys命令,如下:

keys key前綴*

但是,redis的keys是遍歷匹配的,復雜度是O(n),數據庫數據越多就越慢。我們知道,redis是單線程的,如果數據比較多的話,keys指令就會導致redis線程阻塞,線上服務也會停頓了,直到指令執(zhí)行完,服務才會恢復。因此,「一般在生產環(huán)境,不要使用keys指令」。官方文檔也有聲明:

Warning: consider KEYS as a command that should only be used in production environments with extreme care. It may ruin performance when it is executed against large databases. This command is intended for debugging and special operations, such as changing your keyspace layout. Don't use KEYS in your regular application code. If you're looking for a way to find keys in a subset of your keyspace, consider using sets.

其實,可以使用scan指令,它同keys命令一樣提供模式匹配功能。它的復雜度也是 O(n),但是它通過游標分步進行,「不會阻塞redis線程」;但是會有一定的「重復概率」,需要在「客戶端做一次去重」。

scan支持增量式迭代命令,增量式迭代命令也是有缺點的:舉個例子, 使用 SMEMBERS 命令可以返回集合鍵當前包含的所有元素, 但是對于 SCAN 這類增量式迭代命令來說, 因為在對鍵進行增量式迭代的過程中, 鍵可能會被修改, 所以增量式迭代命令只能對被返回的元素提供有限的保證 。

2.4 禁止使用flushall、flushdb

  • Flushall 命令用于清空整個 Redis 服務器的數據(刪除所有數據庫的所有 key )。
  • Flushdb 命令用于清空當前數據庫中的所有 key。

這兩命令是原子性的,不會終止執(zhí)行。一旦開始執(zhí)行,不會執(zhí)行失敗的。

2.5 注意使用del命令

刪除key你一般使用什么命令?是直接del?如果刪除一個key,直接使用del命令當然沒問題。但是,你想過del的時間復雜度是多少嘛?我們分情況探討一下:

  • 如果刪除一個String類型的key,時間復雜度就是 O(1), 「可以直接del」
  • 如果刪除一個List/Hash/Set/ZSet類型時,它的復雜度是 O(n), n表示元素個數。

因此,如果你刪除一個List/Hash/Set/ZSet類型的key時,元素越多,就越慢。「當n很大時,要尤其注意」,會阻塞主線程的。那么,如果不用del,我們應該怎么刪除呢?

  • 如果是List類型,你可以執(zhí)行 lpop或者rpop,直到所有元素刪除完成。
  • 如果是Hash/Set/ZSet類型,你可以先執(zhí)行 hscan/sscan/scan查詢,再執(zhí)行 hdel/srem/zrem依次刪除每個元素。

2.6 避免使用SORT、SINTER等復雜度過高的命令。

執(zhí)行復雜度較高的命令,會消耗更多的 CPU 資源,會阻塞主線程。所以你要避免執(zhí)行如SORT、SINTER、SINTERSTORE、ZUNIONSTORE、ZINTERSTORE等聚合命令,一般建議把它放到客戶端來執(zhí)行。

3、項目實戰(zhàn)避坑操作

3.1 分布式鎖使用的注意點

分布式鎖其實就是,控制分布式系統(tǒng)不同進程共同訪問共享資源的一種鎖的實現(xiàn)。秒殺下單、搶紅包等等業(yè)務場景,都需要用到分布式鎖。我們經常使用Redis作為分布式鎖,主要有這些注意點:

3.1.1 兩個命令SETNX + EXPIRE分開寫(典型錯誤實現(xiàn)范例)

if(jedis.setnx(key_resource_id,lock_value) == 1){ //加鎖
    expire(key_resource_id,100); //設置過期時間
    try { do something  //業(yè)務請求
    }catch(){
  }
  finally {
       jedis.del(key_resource_id); //釋放鎖
    }
}

如果執(zhí)行完setnx加鎖,正要執(zhí)行expire設置過期時間時,進程crash或者要重啟維護了,那么這個鎖就“長生不老”了,「別的線程永遠獲取不到鎖」啦,所以一般分布式鎖不能這么實現(xiàn)。

3.1.2 SETNX + value值是過期時間 (有些小伙伴是這么實現(xiàn),有坑)

long expires = System.currentTimeMillis() + expireTime; //系統(tǒng)時間+設置的過期時間
String expiresStr = String.valueOf(expires);

// 如果當前鎖不存在,返回加鎖成功 if (jedis.setnx(key_resource_id, expiresStr) == 1) { return true;
} 
// 如果鎖已經存在,獲取鎖的過期時間
String currentValueStr = jedis.get(key_resource_id);

// 如果獲取到的過期時間,小于系統(tǒng)當前時間,表示已經過期 if (currentValueStr != null && Long.parseLong(currentValueStr) < System.currentTimeMillis()) { // 鎖已過期,獲取上一個鎖的過期時間,并設置現(xiàn)在鎖的過期時間(不了解redis的getSet命令的小伙伴,可以去官網看下哈) String oldValueStr = jedis.getSet(key_resource_id, expiresStr); if (oldValueStr != null && oldValueStr.equals(currentValueStr)) {
         // 考慮多線程并發(fā)的情況,只有一個線程的設置值和當前值相同,它才可以加鎖 return true;
    }
}
        
//其他情況,均返回加鎖失敗 return false;
}

這種方案的「缺點」

  • 過期時間是客戶端自己生成的,分布式環(huán)境下,每個客戶端的時間必須同步
  • 沒有保存持有者的唯一標識,可能被別的客戶端釋放/解鎖。
  • 鎖過期的時候,并發(fā)多個客戶端同時請求過來,都執(zhí)行了 jedis.getSet(),最終只能有一個客戶端加鎖成功,但是該客戶端鎖的過期時間,可能被別的客戶端覆蓋。

3.1.3:SET的擴展命令(SET EX PX NX)(注意可能存在的問題)

if(jedis.set(key_resource_id, lock_value, "NX", "EX", 100s) == 1){ //加鎖
    try { do something  //業(yè)務處理
    }catch(){
  }
  finally {
       jedis.del(key_resource_id); //釋放鎖
    }
}

這個方案還是可能存在問題:

  • 鎖過期釋放了,業(yè)務還沒執(zhí)行完。
  • 鎖被別的線程誤刪。

3.1.4 SET EX PX NX + 校驗唯一隨機值,再刪除(解決了誤刪問題,還是存在鎖過期,業(yè)務沒執(zhí)行完的問題)

if(jedis.set(key_resource_id, uni_request_id, "NX", "EX", 100s) == 1){ //加鎖
    try { do something  //業(yè)務處理
    }catch(){
  }
  finally {
       //判斷是不是當前線程加的鎖,是才釋放 if (uni_request_id.equals(jedis.get(key_resource_id))) {
        jedis.del(lockKey); //釋放鎖
        }
    }
}

在這里,判斷是不是當前線程加的鎖和釋放鎖不是一個原子操作。如果調用jedis.del()釋放鎖的時候,可能這把鎖已經不屬于當前客戶端,會解除他人加的鎖。

使用Redis,你必須知道的21個注意要點

一般也是用lua腳本代替。lua腳本如下:

if redis.call('get',KEYS[1]) == ARGV[1] then return redis.call('del',KEYS[1]) else return 0
end;

3.1.5 Redisson框架 + Redlock算法 解決鎖過期釋放,業(yè)務沒執(zhí)行完問題+單機問題

Redisson 使用了一個Watch dog解決了鎖過期釋放,業(yè)務沒執(zhí)行完問題,Redisson原理圖如下:

使用Redis,你必須知道的21個注意要點

以上的分布式鎖,還存在單機問題:

使用Redis,你必須知道的21個注意要點

如果線程一在Redis的master節(jié)點上拿到了鎖,但是加鎖的key還沒同步到slave節(jié)點。恰好這時,master節(jié)點發(fā)生故障,一個slave節(jié)點就會升級為master節(jié)點。線程二就可以獲取同個key的鎖啦,但線程一也已經拿到鎖了,鎖的安全性就沒了。

針對單機問題,可以使用Redlock算法。有興趣的朋友可以看下我這篇文章哈,七種方案!探討Redis分布式鎖的正確使用姿勢

3.2 緩存一致性注意點

  • 如果是讀請求,先讀緩存,后讀數據庫
  • 如果寫請求,先更新數據庫,再寫緩存
  • 每次更新數據后,需要清除緩存
  • 緩存一般都需要設置一定的過期失效
  • 一致性要求高的話,可以使用biglog+MQ保證。

有興趣的朋友,可以看下我這篇文章哈:并發(fā)環(huán)境下,先操作數據庫還是先操作緩存?

3.3 合理評估Redis容量,避免由于頻繁set覆蓋,導致之前設置的過期時間無效。

我們知道,Redis的所有數據結構類型,都是可以設置過期時間的。假設一個字符串,已經設置了過期時間,你再去重新設置它,就會導致之前的過期時間無效。

使用Redis,你必須知道的21個注意要點

Redis setKey源碼如下:

void setKey(redisDb *db,robj *key,robj *val) { if(lookupKeyWrite(db,key)==NULL) {
       dbAdd(db,key,val);
    }else{
    dbOverwrite(db,key,val);
    }
    incrRefCount(val);
    removeExpire(db,key); //去掉過期時間
    signalModifiedKey(db,key);
}

實際業(yè)務開發(fā)中,同時我們要合理評估Redis的容量,避免頻繁set覆蓋,導致設置了過期時間的key失效。新手小白容易犯這個錯誤。

3.4 緩存穿透問題

先來看一個常見的緩存使用方式:讀請求來了,先查下緩存,緩存有值命中,就直接返回;緩存沒命中,就去查數據庫,然后把數據庫的值更新到緩存,再返回。

使用Redis,你必須知道的21個注意要點

「緩存穿透」:指查詢一個一定不存在的數據,由于緩存是不命中時需要從數據庫查詢,查不到數據則不寫入緩存,這將導致這個不存在的數據每次請求都要到數據庫去查詢,進而給數據庫帶來壓力。

通俗點說,讀請求訪問時,緩存和數據庫都沒有某個值,這樣就會導致每次對這個值的查詢請求都會穿透到數據庫,這就是緩存穿透。

緩存穿透一般都是這幾種情況產生的:

  • 「業(yè)務不合理的設計」,比如大多數用戶都沒開守護,但是你的每個請求都去緩存,查詢某個userid查詢有沒有守護。
  • 「業(yè)務/運維/開發(fā)失誤的操作」,比如緩存和數據庫的數據都被誤刪除了。
  • 「黑客非法請求攻擊」,比如黑客故意捏造大量非法請求,以讀取不存在的業(yè)務數據。

「如何避免緩存穿透呢?」 一般有三種方法。


  1. 如果是非法請求,我們在API入口,對參數進行校驗,過濾非法值。
  2. 如果查詢數據庫為空,我們可以給緩存設置個空值,或者默認值。但是如有有寫請求進來的話,需要更新緩存哈,以保證緩存一致性,同時,最后給緩存設置適當的過期時間。(業(yè)務上比較常用,簡單有效)
  3. 使用布隆過濾器快速判斷數據是否存在。即一個查詢請求過來時,先通過布隆過濾器判斷值是否存在,存在才繼續(xù)往下查。

布隆過濾器原理:它由初始值為0的位圖數組和N個哈希函數組成。一個對一個key進行N個hash算法獲取N個值,在比特數組中將這N個值散列后設定為1,然后查的時候如果特定的這幾個位置都為1,那么布隆過濾器判斷該key存在。

3.5 緩存雪奔問題

「緩存雪奔:」 指緩存中數據大批量到過期時間,而查詢數據量巨大,請求都直接訪問數據庫,引起數據庫壓力過大甚至down機。

  • 緩存雪奔一般是由于大量數據同時過期造成的,對于這個原因,可通過均勻設置過期時間解決,即讓過期時間相對離散一點。如采用一個較大固定值+一個較小的隨機值,5小時+0到1800秒醬紫。
  • Redis 故障宕機也可能引起緩存雪奔。這就需要構造Redis高可用集群啦。

3.6 緩存擊穿問題

「緩存擊穿:」 指熱點key在某個時間點過期的時候,而恰好在這個時間點對這個Key有大量的并發(fā)請求過來,從而大量的請求打到db。

緩存擊穿看著有點像,其實它兩區(qū)別是,緩存雪奔是指數據庫壓力過大甚至down機,緩存擊穿只是大量并發(fā)請求到了DB數據庫層面??梢哉J為擊穿是緩存雪奔的一個子集吧。有些文章認為它倆區(qū)別,是區(qū)別在于擊穿針對某一熱點key緩存,雪奔則是很多key。

解決方案就有兩種:

  • 「1.使用互斥鎖方案」。緩存失效時,不是立即去加載db數據,而是先使用某些帶成功返回的原子操作命令,如(Redis的setnx)去操作,成功的時候,再去加載db數據庫數據和設置緩存。否則就去重試獲取緩存。
  • 「2. “永不過期”」,是指沒有設置過期時間,但是熱點數據快要過期時,異步線程去更新和設置過期時間。

3.7、緩存熱key問題

在Redis中,我們把訪問頻率高的key,稱為熱點key。如果某一熱點key的請求到服務器主機時,由于請求量特別大,可能會導致主機資源不足,甚至宕機,從而影響正常的服務。

而熱點Key是怎么產生的呢?主要原因有兩個:

  • 用戶消費的數據遠大于生產的數據,如秒殺、熱點新聞等讀多寫少的場景。
  • 請求分片集中,超過單Redi服務器的性能,比如固定名稱key,Hash落入同一臺服務器,瞬間訪問量極大,超過機器瓶頸,產生熱點Key問題。

那么在日常開發(fā)中,如何識別到熱點key呢?

  • 憑經驗判斷哪些是熱Key;
  • 客戶端統(tǒng)計上報;
  • 服務代理層上報

如何解決熱key問題?

  • Redis集群擴容:增加分片副本,均衡讀流量;
  • 對熱key進行hash散列,比如將一個key備份為key1,key2……keyN,同樣的數據N個備份,N個備份分布到不同分片,訪問時可隨機訪問N個備份中的一個,進一步分擔讀流量;
  • 使用二級緩存,即JVM本地緩存,減少Redis的讀請求。

4. Redis配置運維

4.1 使用長連接而不是短連接,并且合理配置客戶端的連接池

  • 如果使用短連接,每次都需要過 TCP 三次握手、四次揮手,會增加耗時。然而長連接的話,它建立一次連接,redis的命令就能一直使用,醬紫可以減少建立redis連接時間。
  • 連接池可以實現(xiàn)在客戶端建立多個連接并且不釋放,需要使用連接的時候,不用每次都創(chuàng)建連接,節(jié)省了耗時。但是需要合理設置參數,長時間不操作 Redis時,也需及時釋放連接資源。

4.2 只使用 db0

Redis-standalone架構禁止使用非db0.原因有兩個

  • 一個連接,Redis執(zhí)行命令select 0和select 1切換,會損耗新能。
  • Redis Cluster 只支持 db0,要遷移的話,成本高

4.3 設置maxmemory + 恰當的淘汰策略。

為了防止內存積壓膨脹。比如有些時候,業(yè)務量大起來了,redis的key被大量使用,內存直接不夠了,運維小哥哥也忘記加大內存了。難道redis直接這樣掛掉?所以需要根據實際業(yè)務,選好maxmemory-policy(最大內存淘汰策略),設置好過期時間。一共有8種內存淘汰策略:

  • volatile-lru:當內存不足以容納新寫入數據時,從設置了過期時間的key中使用LRU(最近最少使用)算法進行淘汰;
  • allkeys-lru:當內存不足以容納新寫入數據時,從所有key中使用LRU(最近最少使用)算法進行淘汰。
  • volatile-lfu:4.0版本新增,當內存不足以容納新寫入數據時,在過期的key中,使用LFU算法進行刪除key。
  • allkeys-lfu:4.0版本新增,當內存不足以容納新寫入數據時,從所有key中使用LFU算法進行淘汰;
  • volatile-random:當內存不足以容納新寫入數據時,從設置了過期時間的key中,隨機淘汰數據;。
  • allkeys-random:當內存不足以容納新寫入數據時,從所有key中隨機淘汰數據。
  • volatile-ttl:當內存不足以容納新寫入數據時,在設置了過期時間的key中,根據過期時間進行淘汰,越早過期的優(yōu)先被淘汰;
  • noeviction:默認策略,當內存不足以容納新寫入數據時,新寫入操作會報錯。

4.4 開啟 lazy-free 機制

Redis4.0+版本支持lazy-free機制,如果你的Redis還是有bigKey這種玩意存在,建議把lazy-free開啟。當開啟它后,Redis 如果刪除一個 bigkey 時,釋放內存的耗時操作,會放到后臺線程去執(zhí)行,減少對主線程的阻塞影響。

使用Redis,你必須知道的21個注意要點

參考與感謝

  • Redis 千萬不要亂用KEYS命令,不然會挨打的 [1]
  • 阿里云Redis開發(fā)規(guī)范 [2]
  • Redis 最佳實踐指南:7個維度+43條使用規(guī)范
  • Redis的緩存穿透及解決方法——布隆過濾器BloomFilter [3]
  • Redis 緩存性能實踐及總結 [4]



		
		
		
		

免責聲明:本文內容由21ic獲得授權后發(fā)布,版權歸原作者所有,本平臺僅提供信息存儲服務。文章僅代表作者個人觀點,不代表本平臺立場,如有問題,請聯(lián)系我們,謝謝!

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: 驅動電源

在工業(yè)自動化蓬勃發(fā)展的當下,工業(yè)電機作為核心動力設備,其驅動電源的性能直接關系到整個系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動勢抑制與過流保護是驅動電源設計中至關重要的兩個環(huán)節(jié),集成化方案的設計成為提升電機驅動性能的關鍵。

關鍵字: 工業(yè)電機 驅動電源

LED 驅動電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個照明設備的使用壽命。然而,在實際應用中,LED 驅動電源易損壞的問題卻十分常見,不僅增加了維護成本,還影響了用戶體驗。要解決這一問題,需從設計、生...

關鍵字: 驅動電源 照明系統(tǒng) 散熱

根據LED驅動電源的公式,電感內電流波動大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關鍵字: LED 設計 驅動電源

電動汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產業(yè)的重要發(fā)展方向。電動汽車的核心技術之一是電機驅動控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機驅動系統(tǒng)中的關鍵元件,其性能直接影響到電動汽車的動力性能和...

關鍵字: 電動汽車 新能源 驅動電源

在現(xiàn)代城市建設中,街道及停車場照明作為基礎設施的重要組成部分,其質量和效率直接關系到城市的公共安全、居民生活質量和能源利用效率。隨著科技的進步,高亮度白光發(fā)光二極管(LED)因其獨特的優(yōu)勢逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關鍵字: 發(fā)光二極管 驅動電源 LED

LED通用照明設計工程師會遇到許多挑戰(zhàn),如功率密度、功率因數校正(PFC)、空間受限和可靠性等。

關鍵字: LED 驅動電源 功率因數校正

在LED照明技術日益普及的今天,LED驅動電源的電磁干擾(EMI)問題成為了一個不可忽視的挑戰(zhàn)。電磁干擾不僅會影響LED燈具的正常工作,還可能對周圍電子設備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來解決L...

關鍵字: LED照明技術 電磁干擾 驅動電源

開關電源具有效率高的特性,而且開關電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機重量也有所下降,所以,現(xiàn)在的LED驅動電源

關鍵字: LED 驅動電源 開關電源

LED驅動電源是把電源供應轉換為特定的電壓電流以驅動LED發(fā)光的電壓轉換器,通常情況下:LED驅動電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關鍵字: LED 隧道燈 驅動電源
關閉