日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁(yè) > 技術(shù)學(xué)院 > 技術(shù)前線
[導(dǎo)讀]基于STM32F407VGT6單片機(jī)的FSMC與FPGA通信

1. 關(guān)于FSMC

FSMC引腳定義:

地址線:A16-23 共8根地址線

數(shù)據(jù)線有16根(看單片機(jī)的原理圖)

控制信號(hào)RD、WR、NE1/NCE2,這兩個(gè)片選都接的是PD7,NE1即選中BAN1,用于擴(kuò)展外部SRAM,FPGA相當(dāng)于掛在單片機(jī)的BANK1,實(shí)質(zhì)就是單片機(jī)進(jìn)行讀寫(xiě)FPGA。

2.FPGA測(cè)試程序(網(wǎng)上找的)

module STM32_FPGA(

input main_clk,

// output arm_clk,

output led,

input [2:0] addr,

inout [15:0] data,

input FPGA_CS0,//FPGA片選

input RD,

input WR

);

wire clk;

pll_50M pll_50M_inst (

.inclk0 ( main_clk ),//25M

.c0 ( clk ), //50M

.c1 ( arm_clk ) //8M

);

//reg [24:0] cnt = 0;

//always @(posedge clk)

// cnt <= cnt + 1'b1;

//assign led = cnt[24];

//AWE的上升沿,將數(shù)據(jù)寫(xiě)入FPGA寄存器

reg [15:0] ARM_FPGA_REG0;

reg [15:0] ARM_FPGA_REG1;

reg [15:0] ARM_FPGA_REG2;

reg [15:0] ARM_FPGA_REG3;

reg [15:0] ARM_FPGA_REG4;

reg [15:0] ARM_FPGA_REG5;

reg [15:0] ARM_FPGA_REG6;

reg [15:0] ARM_FPGA_REG7;

wire rd_en = ~FPGA_CS0 && ~RD;

reg [15:0] data_reg;

always @(*)

begin

if(rd_en)

begin

case(addr[2:0])

3'd0 : data_reg <= ARM_FPGA_REG0;

3'd1 : data_reg <= ARM_FPGA_REG1;

3'd2 : data_reg <= ARM_FPGA_REG2;

3'd3 : data_reg <= ARM_FPGA_REG3;

3'd4 : data_reg <= ARM_FPGA_REG4;

3'd5 : data_reg <= ARM_FPGA_REG5;

3'd6 : data_reg <= ARM_FPGA_REG6;

3'd7 : data_reg <= ARM_FPGA_REG7;

default: ;

endcase

end

end

/* AWE上升沿DSP的數(shù)據(jù)寫(xiě)入FPGA,即sampling point */

reg WR_tmp1;

reg WR_tmp2;

always @(posedge main_clk)//之前是CLK

begin

WR_tmp1 <= WR;

WR_tmp2 <= WR_tmp1;

end

wire WR_RISING = ~WR_tmp2 && WR_tmp1;//與clk同步

always @(*)

begin

if(WR_RISING)

begin

case(addr[2:0])

3'd0 : ARM_FPGA_REG0 <= data;

3'd1 : ARM_FPGA_REG1 <= data;

3'd2 : ARM_FPGA_REG2 <= data;

3'd3 : ARM_FPGA_REG3 <= data;

3'd4 : ARM_FPGA_REG4 <= data;

3'd5 : ARM_FPGA_REG5 <= data;

3'd6 : ARM_FPGA_REG6 <= data;

3'd7 : ARM_FPGA_REG7 <= data;

default: ;

endcase

end

end

assign data = rd_en ? data_reg : 16'hzzzz;

endmodule

3.STM32測(cè)試程序

//讀寫(xiě)函數(shù)

#define fpga_write(offset,data) *((volatile unsigned short int *)(0x60000000 + (offset << 17))) = data

#define fpga_read(offset) *((volatile unsigned short int *)(0x60000000 + (offset << 17)))

//FSMC初始化函數(shù),用LCD改的

void fcmc_Init(void )

{

GPIO_InitTypeDef GPIO_InitStructure;

FSMC_NORSRAMInitTypeDef FSMC_NORSRAMInitStructure;

FSMC_NORSRAMTimingInitTypeDef p;

RCC_AHB3PeriphClockCmd(RCC_AHB3Periph_FSMC, ENABLE);

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOD | RCC_AHB1Periph_GPIOE | RCC_AHB1Periph_GPIOG, ENABLE);

GPIO_PinAFConfig(GPIOB, GPIO_PinSource7, GPIO_AF_FSMC);

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;

GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;

GPIO_Init(GPIOB, &GPIO_InitStructure);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource0, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource1, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource3, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource4, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource5, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource6, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource7, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource8, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource9, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource10, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource11, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource12, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource13, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource14, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOD, GPIO_PinSource15, GPIO_AF_FSMC);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 |

GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 |

GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;

GPIO_Init(GPIOD, &GPIO_InitStructure);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource2 , GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource3 , GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource4 , GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource5 , GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource6 , GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource7 , GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource8 , GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource9 , GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource10, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource11, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource12, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource13, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource14, GPIO_AF_FSMC);

GPIO_PinAFConfig(GPIOE, GPIO_PinSource15, GPIO_AF_FSMC);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3 | GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 |

GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15;

GPIO_Init(GPIOE, &GPIO_InitStructure);

GPIO_PinAFConfig(GPIOG, GPIO_PinSource13, GPIO_AF_FSMC);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13;

GPIO_Init(GPIOG, &GPIO_InitStructure);

p.FSMC_AddressSetupTime = 1;

p.FSMC_AddressHoldTime = 0;

p.FSMC_DataSetupTime = 4;

p.FSMC_BusTurnAroundDuration = 0;

p.FSMC_CLKDivision = 0;

p.FSMC_DataLatency = 0;

p.FSMC_AccessMode = FSMC_AccessMode_A;

FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM1;

FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Enable;

FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;

FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;

FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;

FSMC_NORSRAMInitStructure.FSMC_AsynchronousWait = FSMC_AsynchronousWait_Disable;

FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;

FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;

FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;

FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;

FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;

FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;

FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;

FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;

FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;

FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);

//FSMC Bank1_SRAM1 Bank

FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM1, ENABLE);

delay_ms(50);

}

4.最后用quartusii中sigtapII測(cè)試

本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問(wèn)題卻十分常見(jiàn),不僅增加了維護(hù)成本,還影響了用戶體驗(yàn)。要解決這一問(wèn)題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(EV)作為新能源汽車的重要代表,正逐漸成為全球汽車產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問(wèn)題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周圍電子設(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開(kāi)關(guān)電源具有效率高的特性,而且開(kāi)關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開(kāi)關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉