日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當(dāng)前位置:首頁(yè) > 廠(chǎng)商動(dòng)態(tài) > 英飛凌
[導(dǎo)讀]功率因素校正為將電源的輸入電流塑形為正弦波并與電源電壓同步,最大化地從電源汲取實(shí)際功率。 在完美的 PFC 電路中,輸入電壓與電流之間為純電阻關(guān)系,無(wú)任何輸入電流諧波。 目前,升壓拓?fù)涫?PFC 最常見(jiàn)的拓?fù)?。在效率和功率密度的表現(xiàn)上,必須要走向無(wú)橋型,才能進(jìn)一步減少器件使用,減少功率器件數(shù)量與導(dǎo)通路徑上的損耗。 在其中,圖騰柱功率因素校正電路(totem-pole PFC)已證明為成功的拓?fù)浣Y(jié)構(gòu),其控制法亦趨于成熟。

前言

功率因素校正為將電源的輸入電流塑形為正弦波并與電源電壓同步,最大化地從電源汲取實(shí)際功率。 在完美的 PFC 電路中,輸入電壓與電流之間為純電阻關(guān)系,無(wú)任何輸入電流諧波。 目前,升壓拓?fù)涫?PFC 最常見(jiàn)的拓?fù)?。在效率和功率密度的表現(xiàn)上,必須要走向無(wú)橋型,才能進(jìn)一步減少器件使用,減少功率器件數(shù)量與導(dǎo)通路徑上的損耗。 在其中,圖騰柱功率因素校正電路(totem-pole PFC)已證明為成功的拓?fù)浣Y(jié)構(gòu),其控制法亦趨于成熟。

一般而言,超級(jí)結(jié)MOSFET(Super junction MOSFET)在圖騰柱的應(yīng)用,尤其是針對(duì)連續(xù)導(dǎo)通模式,效能將會(huì)大打折扣。原因是在控制能量的高頻橋臂在切換過(guò)程中產(chǎn)生的硬切損耗與寄生二極管的反向恢復(fù)損耗。為克服此應(yīng)用問(wèn)題,目前在市面上采用的對(duì)策多為采用寬禁帶半導(dǎo)體。

為了實(shí)現(xiàn)在圖騰柱PFC使用常見(jiàn)的開(kāi)關(guān)器件,本文介紹預(yù)充電電路的解決方案。 相較采用寬禁帶半導(dǎo)體,此方案的功率半導(dǎo)體器件較普遍且容易取得,提供給使用者做為設(shè)計(jì)參考。

基本工作原理

在介紹新方法之前,首先介紹超級(jí)結(jié)半導(dǎo)體開(kāi)關(guān)切換瞬時(shí)特性。因?yàn)榘雽?dǎo)體設(shè)計(jì)趨勢(shì)仍在降低開(kāi)關(guān)損耗以提升產(chǎn)品功率密度,即降低在開(kāi)關(guān)切換過(guò)程中V-I 交越的損耗,常見(jiàn)半導(dǎo)體廠(chǎng)商的做法為將開(kāi)關(guān)等效輸出電容(Coss)特性設(shè)計(jì)為非線(xiàn)性曲線(xiàn):在低壓時(shí),Coss值較大,隨著電壓提升,在接近于中壓時(shí)電容值急劇降低,如下圖左Coss特性曲線(xiàn)(本文皆以英飛凌CoolMOS為范例),如此可減少V-I交越的損耗面積。 隨著制程技術(shù)演進(jìn),Coss變化曲線(xiàn)變壓更為急劇,這在新老代的MOSFET可明顯比較出性能差異。如下圖右為比較新老代MOSFET的Coss特性與開(kāi)關(guān)損耗的差異。

如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路

圖1:Coss曲線(xiàn)和開(kāi)關(guān)損耗比較

針對(duì)半橋的應(yīng)用,兩顆特性相同MOSFET 橋接后的出電容特性如下圖2。 在半橋應(yīng)用普遍重視零電壓切換,因?yàn)镸OSFET總輸出電容的儲(chǔ)能損耗(Qoss)與反向恢復(fù)特性(Qrr)將大幅增加半橋架構(gòu)在硬切換時(shí)的損耗。在半橋中如圖所示的等效輸出電容最大值則發(fā)生在任一臂開(kāi)關(guān)為0V的狀態(tài),隨著任一橋臂電壓提升至20~30V左右,等效輸出容值則急劇降低,此特性將用于接下來(lái)將介紹的補(bǔ)償電路。

如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路

圖2:半橋CoolMOS Coss電壓變化曲線(xiàn)

下圖3為預(yù)充電電路 的范例。在該拓樸中,二極管模式開(kāi)關(guān)的硬換向發(fā)生于每個(gè)開(kāi)關(guān)切換周期。在有的半橋結(jié)構(gòu)中,考慮在電感中累積的能量,在Q1關(guān)閉之后Q2通常會(huì)工作在軟開(kāi)關(guān)(Soft Switching)狀態(tài)。然而,當(dāng)Q2關(guān)斷時(shí),由于電感電流連續(xù)的特性,使得此電流流過(guò)其本體二極管。 當(dāng)Q1導(dǎo)通時(shí),則會(huì)發(fā)生Q2體二極管電流的硬換向。

如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路

圖3:針對(duì)圖騰柱架構(gòu)高頻半橋預(yù)充電動(dòng)作示意圖

通過(guò)加入的預(yù)充電電路,在二極管模式下工作的MOSFET便可以在通道開(kāi)啟前預(yù)充至特定的電壓,例如24V。 如此便可大幅的降低 Qoss及Qrr相關(guān)的損耗。 因此可以大幅提高CoolMOS在CCM Totem Pole PFC的整體性能。

建議的預(yù)充電解決方案需要為半橋中的每個(gè)功率開(kāi)關(guān)器件配備額外的器件:高壓肖特基二極管(圖中的D1和D2)和一個(gè)低壓的MOSFET(圖中的Q3和Q4)。另外還需要兩個(gè)電壓源來(lái)驅(qū)動(dòng)半橋和低壓MOSFET(13V)以及MOSFET漏-源端電壓(24V)。 此外,驅(qū)動(dòng)器輸入端包含的Rx-Cx和Ry-Cy濾波器為PWM信號(hào)設(shè)定正確的時(shí)序,不需額外的控制信號(hào)。

如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路

圖4:圖騰柱架構(gòu)預(yù)充電電路時(shí)序控制圖

主要波形如圖4所示。在t0之前的狀態(tài)下,電感器通過(guò)Q1充電,一旦Q1關(guān)閉,電感電流就會(huì)流過(guò)Q2,首先通過(guò)其本體二極管,然后在Q2開(kāi)啟后流過(guò)器件通道。 因此,在Totem pole PFC中,Q2開(kāi)啟時(shí)工作在零電壓(ZVS)開(kāi)關(guān)。 在t0時(shí),PWM A 信號(hào)置低,經(jīng)過(guò)一定的延遲時(shí)間后(Ry與Cy的延遲) ,Q2的柵源極電壓信號(hào)(VGS)也在t1置低。 在半橋的死區(qū)(Dead time)時(shí)間內(nèi)(t1到t2),電感電流通過(guò)Q2的體二極管續(xù)流。在t2之前,Q2的VDS被鉗位到地并且所有自舉電容器(CHS_P除外)都被驅(qū)動(dòng)電壓和24V電壓充電(圖五a與b)。 然后在死區(qū)時(shí)間(Dead Time)后,PWM B 置高,通過(guò)Cx、Rx 產(chǎn)生Q4的短暫柵極電壓。因此,預(yù)充電的Q4會(huì)在t2開(kāi)啟(圖五c),預(yù)充電電流流經(jīng)Q4到D2到Q2的網(wǎng)絡(luò)中,這種預(yù)充電流的的幅度必須高于流經(jīng)Q2體二極管的續(xù)流電流。 在預(yù)充電流結(jié)束時(shí)(t3),Q2的漏-源極電壓被預(yù)充電至24V。

如圖4所示,預(yù)充電電流波形有兩個(gè)峰值脈沖:第一個(gè)在t2和t3之間,與Q2的Coss有關(guān)。 第二個(gè)在t3和t4之間幅度較小,是由預(yù)充電回路的雜散電感諧振形成。 Q1被延遲到t4 開(kāi)啟,此時(shí)Q2的Coss已經(jīng)被24V所耗盡了。如圖五d所示,當(dāng)Q1導(dǎo)通時(shí),用于Q3的自舉電容從Q1的自舉電容充電。從圖四可以看出,在Q1或Q2開(kāi)啟時(shí),預(yù)充電的Q4 或Q3都尚未關(guān)閉,如此為保證Q1或Q2開(kāi)啟瞬間的低損耗。如果此脈沖過(guò)短,則Q2在開(kāi)啟瞬間發(fā)生硬換向的可能性很高。 如果其在多個(gè)連續(xù)事件期間發(fā)生,則會(huì)產(chǎn)生破壞性的結(jié)果。

當(dāng)PWM B信號(hào)置低時(shí),與之前類(lèi)似,Q1會(huì)延遲到t5才關(guān)閉(Ry與Cy的延時(shí))。在通道關(guān)閉后,Q1的Coss會(huì)充電到400V 而Q2的Coss將放電到0V,從而使Q2產(chǎn)生零電壓開(kāi)關(guān)(ZVS)。PFC 應(yīng)用中的開(kāi)關(guān)到二極管切換就是這種情況。在這種情況下,高壓側(cè)開(kāi)關(guān)(CHS_DP到Q3到D1)的預(yù)充電電路不會(huì)對(duì)基于MOSFET的半橋電路工作造成任何影響。

當(dāng)負(fù)載或電感電流足夠高時(shí),會(huì)使Coss充分被充放電,進(jìn)而達(dá)到零電壓開(kāi)關(guān)(ZVS)的目的。但是,如果電感電流不足以對(duì)半橋等效的Coss進(jìn)行充放電時(shí),則會(huì)發(fā)生硬開(kāi)關(guān)。可以參考圖4中t5后的虛線(xiàn)。在這種狀況下,施加到Q3的脈沖電壓通過(guò)D1將Q1的Coss充電至24V。一旦Q2導(dǎo)通,其漏源極電壓將再次下降到接近于零,實(shí)現(xiàn)比較平滑的開(kāi)關(guān)到寄生二極管的切換。

如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路

圖5:預(yù)充電電路增加預(yù)充電電路的硬換向瞬態(tài)工作示意圖

測(cè)試結(jié)果

本章節(jié)展示了3300W無(wú)橋CCM Totem pole PFC評(píng)估板的規(guī)格與性能。此評(píng)估板實(shí)現(xiàn)了本文中介紹的預(yù)充電電路并使用600 V CoolMOS CFD7來(lái)實(shí)現(xiàn)CCM Totem pole PFC,其寄生二極管特性為低反向恢復(fù)電荷,在極端條件下硬開(kāi)關(guān)不易損壞。 如圖六為完整電路圖,高頻部分并聯(lián)使用CoolMOS IPT60R090CFD7,預(yù)充電電路使用BSZ440N10S3。

圖7 為評(píng)估板穩(wěn)態(tài)和動(dòng)態(tài)條件下的性能和規(guī)格。轉(zhuǎn)換器工作在65kHz開(kāi)關(guān)頻率,僅適用于高壓?jiǎn)坞妷狠斎搿?最低交流輸入電壓為176Vac rms。

如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路

圖6:評(píng)估板電路圖

Test
Conditions
Specification
Efficiency test
230Vrms, 50Hz/60Hz
ηpk≈99% at 1650 W (50% Load)
Current THD
230Vrms, 50Hz/60Hz
THDi less than 10% from 10% load
Power factor
230Vrms, 50Hz/60Hz
PF more than 0.95 from 20% load
Rated DC voltage

400V
Steady-state Vout ripple
230Vrms, 50Hz/60Hz, 100% load
?Vout less t?an 20Vpk?pk
Inrush current
230Vrms, 50Hz/60Hz, measured on the first AC cycle
Iin_Peak less than 30A

圖7:性能規(guī)格表

下圖為穩(wěn)態(tài)效率實(shí)測(cè)結(jié)果,顯示了在不同交流電壓下的效率測(cè)量值,此測(cè)量結(jié)果包含控制器及風(fēng)扇的基本損耗(6W aux power)。

如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路

圖8:穩(wěn)態(tài)效率測(cè)試結(jié)果

下圖為T(mén)otem Pole PFC 的主要工作波型,其中還包含了預(yù)充電電路的波形。 由波形可見(jiàn)預(yù)充電電流只出現(xiàn)在相應(yīng)的交流周期中,對(duì)相反的交流周期沒(méi)有影響。

如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路

圖9:穩(wěn)態(tài)輸入電壓、電感電流與預(yù)充電電流波形

圖10和圖11分別顯示了0A 和23A電感電流的漏-源電壓波形(滿(mǎn)載穩(wěn)態(tài)操作下),包含必要的預(yù)充電電流波形。 測(cè)量的波形與上一章節(jié)所示的電壓電流預(yù)充電波形(圖四)吻合。

如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路

圖10:空載的預(yù)充電電流瞬時(shí)波形

如何將CoolMOS應(yīng)用于連續(xù)導(dǎo)通模式的圖騰柱功率因數(shù)校正電路

圖11:滿(mǎn)載的預(yù)充電電流瞬時(shí)波形

結(jié)論

本文介紹了以MOSFET實(shí)現(xiàn)無(wú)橋連續(xù)導(dǎo)通模式圖騰柱PFC的解決方案,該方案在1U的外型尺寸和80W/inch3的功率密度下實(shí)現(xiàn)了99%的峰值效率。此評(píng)估版采用英飛凌600V CoolMOS CFD7系列MOSFET和預(yù)充電電路。 該預(yù)充電電路通過(guò)低壓電壓源提供電荷降低Qoss 和Qrr的損耗,在前文已介紹預(yù)充電的工作原理供讀者知悉。CoolMOS CFD7和預(yù)充電電路的組合,以及為低頻橋臂選用的CoolMOS? S7,以高性?xún)r(jià)比電路展現(xiàn)高性能效率水平。 此外,盡管預(yù)充電電路增加了半導(dǎo)體器件數(shù)量,但輔助電路皆可使用貼片型封裝,因此可以實(shí)現(xiàn)高功率密度的電源設(shè)計(jì)。

參考文獻(xiàn)1. Evaluation board EVAL_3K3W_TP_PFC_SIC

2. Design guide MOSFET CoolMOS? C7 600V


本站聲明: 本文章由作者或相關(guān)機(jī)構(gòu)授權(quán)發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀(guān)點(diǎn),本站亦不保證或承諾內(nèi)容真實(shí)性等。需要轉(zhuǎn)載請(qǐng)聯(lián)系該專(zhuān)欄作者,如若文章內(nèi)容侵犯您的權(quán)益,請(qǐng)及時(shí)聯(lián)系本站刪除。
換一批
延伸閱讀

LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: 驅(qū)動(dòng)電源

在工業(yè)自動(dòng)化蓬勃發(fā)展的當(dāng)下,工業(yè)電機(jī)作為核心動(dòng)力設(shè)備,其驅(qū)動(dòng)電源的性能直接關(guān)系到整個(gè)系統(tǒng)的穩(wěn)定性和可靠性。其中,反電動(dòng)勢(shì)抑制與過(guò)流保護(hù)是驅(qū)動(dòng)電源設(shè)計(jì)中至關(guān)重要的兩個(gè)環(huán)節(jié),集成化方案的設(shè)計(jì)成為提升電機(jī)驅(qū)動(dòng)性能的關(guān)鍵。

關(guān)鍵字: 工業(yè)電機(jī) 驅(qū)動(dòng)電源

LED 驅(qū)動(dòng)電源作為 LED 照明系統(tǒng)的 “心臟”,其穩(wěn)定性直接決定了整個(gè)照明設(shè)備的使用壽命。然而,在實(shí)際應(yīng)用中,LED 驅(qū)動(dòng)電源易損壞的問(wèn)題卻十分常見(jiàn),不僅增加了維護(hù)成本,還影響了用戶(hù)體驗(yàn)。要解決這一問(wèn)題,需從設(shè)計(jì)、生...

關(guān)鍵字: 驅(qū)動(dòng)電源 照明系統(tǒng) 散熱

根據(jù)LED驅(qū)動(dòng)電源的公式,電感內(nèi)電流波動(dòng)大小和電感值成反比,輸出紋波和輸出電容值成反比。所以加大電感值和輸出電容值可以減小紋波。

關(guān)鍵字: LED 設(shè)計(jì) 驅(qū)動(dòng)電源

電動(dòng)汽車(chē)(EV)作為新能源汽車(chē)的重要代表,正逐漸成為全球汽車(chē)產(chǎn)業(yè)的重要發(fā)展方向。電動(dòng)汽車(chē)的核心技術(shù)之一是電機(jī)驅(qū)動(dòng)控制系統(tǒng),而絕緣柵雙極型晶體管(IGBT)作為電機(jī)驅(qū)動(dòng)系統(tǒng)中的關(guān)鍵元件,其性能直接影響到電動(dòng)汽車(chē)的動(dòng)力性能和...

關(guān)鍵字: 電動(dòng)汽車(chē) 新能源 驅(qū)動(dòng)電源

在現(xiàn)代城市建設(shè)中,街道及停車(chē)場(chǎng)照明作為基礎(chǔ)設(shè)施的重要組成部分,其質(zhì)量和效率直接關(guān)系到城市的公共安全、居民生活質(zhì)量和能源利用效率。隨著科技的進(jìn)步,高亮度白光發(fā)光二極管(LED)因其獨(dú)特的優(yōu)勢(shì)逐漸取代傳統(tǒng)光源,成為大功率區(qū)域...

關(guān)鍵字: 發(fā)光二極管 驅(qū)動(dòng)電源 LED

LED通用照明設(shè)計(jì)工程師會(huì)遇到許多挑戰(zhàn),如功率密度、功率因數(shù)校正(PFC)、空間受限和可靠性等。

關(guān)鍵字: LED 驅(qū)動(dòng)電源 功率因數(shù)校正

在LED照明技術(shù)日益普及的今天,LED驅(qū)動(dòng)電源的電磁干擾(EMI)問(wèn)題成為了一個(gè)不可忽視的挑戰(zhàn)。電磁干擾不僅會(huì)影響LED燈具的正常工作,還可能對(duì)周?chē)娮釉O(shè)備造成不利影響,甚至引發(fā)系統(tǒng)故障。因此,采取有效的硬件措施來(lái)解決L...

關(guān)鍵字: LED照明技術(shù) 電磁干擾 驅(qū)動(dòng)電源

開(kāi)關(guān)電源具有效率高的特性,而且開(kāi)關(guān)電源的變壓器體積比串聯(lián)穩(wěn)壓型電源的要小得多,電源電路比較整潔,整機(jī)重量也有所下降,所以,現(xiàn)在的LED驅(qū)動(dòng)電源

關(guān)鍵字: LED 驅(qū)動(dòng)電源 開(kāi)關(guān)電源

LED驅(qū)動(dòng)電源是把電源供應(yīng)轉(zhuǎn)換為特定的電壓電流以驅(qū)動(dòng)LED發(fā)光的電壓轉(zhuǎn)換器,通常情況下:LED驅(qū)動(dòng)電源的輸入包括高壓工頻交流(即市電)、低壓直流、高壓直流、低壓高頻交流(如電子變壓器的輸出)等。

關(guān)鍵字: LED 隧道燈 驅(qū)動(dòng)電源
關(guān)閉