日本黄色一级经典视频|伊人久久精品视频|亚洲黄色色周成人视频九九九|av免费网址黄色小短片|黄色Av无码亚洲成年人|亚洲1区2区3区无码|真人黄片免费观看|无码一级小说欧美日免费三级|日韩中文字幕91在线看|精品久久久无码中文字幕边打电话

當前位置:首頁 > 消費電子 > 消費電子
[導讀]D類放大器通常具有比AB類放大器更高的效率,適合低功耗應用。然而,盡管D類放大器具有這一先天優(yōu)勢,但仍然不能彌補傳統(tǒng)D類放大器所存在的缺點,即增加了成本,降低了音頻性能,并且需要輸出濾波。然而,近年來D類放大器技術的進步,降低了D類放大器成本,同時可以提供與AB類放大器相類似的音頻性能。此外,一些新型的D類輸出調制方案同時也降低許多應用中的EMI。

引言

近年來D類放大器的技術迅猛發(fā)展,最常見的莫過于應用于每個通道低于50W的低功耗產品中。在這些低功耗應用中,D類放大器相比傳統(tǒng)AB類放大器而言有效率上的先天優(yōu)勢,因為D類放大器的輸出級通常只處于導通或關斷,沒有中間偏壓級。然而,長久以來,這一效率上的優(yōu)勢并未使其獲得設計人員的廣泛青睞,因為D類放大器也有明顯的缺點:器件成本高、較差的音頻性能(與AB類放大器相比),并且需要輸出濾波。

近年來,受以下兩個主要因素的影響,這樣的局面正逐漸扭轉,使D類放大器在很多應用領域引起了人們的廣泛關注。

首先,是市場需要。D類放大器的某些優(yōu)點推動了手機和LCD平板顯示器這兩個終端設備市場的迅速發(fā)展。對于手機來說,揚聲器和PTT (Push-to-Talk,一鍵通)模式需要D類放大器的高效率,以延長電池壽命。LCD平板顯示器的發(fā)展對電子器件提出了“低溫運行(cool running)”的需求,這是由于工作溫度的升高將影響顯示顏色對比度。而D類放大器的高效率意味著驅動電子設備時功耗更低,使LCD平板顯示器工作時發(fā)熱更少,圖像顯示效果更好。

影響D類放大器應用的第二個因素便是自身技術的發(fā)展。根據市場需要,一些制造商改進了D類放大技術,使D類放大器具有更理想價格的同時,也具備了與AB類放大器相近的音頻性能。此外,一些新型的D類放大器輸出調制方案還可以降低實際應用的EMI。

某些新型D類放大設計方案雖然是基于老式的PWM型結構,但采用了更復雜的調制技術,實現低功耗系統(tǒng)中的無濾波工作。效率指標可以通過測試驗證,但某些設計人員仍然懷疑基于這些新技術的產品將存在普遍的EMC/RFI兼容性問題。實際上,良好的PCB布局和較短的揚聲器連線可以保證大大降低EMI幅射,使之滿足FCC或CE標準。


應用難點

有些應用中的物理布局需要長的揚聲器連線,這樣的揚聲器連線便具有天線效應,必須嚴格控制RF幅射。實際上,揚聲器連線越長,它作為天線產生幅射的頻率就越低。同時,某些應用要求EMI幅射低于CE/FCC標準,以符合汽車電子規(guī)范,或者避免干擾其他低頻電路。面對如此紛繁各異的需求,這些應用往往成為一些難點無法克服。

最有代表性的應用難點便是平板電視。由于揚聲器通常排列在設備的外側邊緣,往往不可避免的要使用長的揚聲器連線。如果還存在模擬視頻信號,則僅僅滿足FCC或CE的RF幅射要求還不夠(這些標準只針對30MHz以上的頻率);往往還需要抑制開關基頻以避免干擾視頻信號。如果采用早期PWM放大器所用的傳統(tǒng)LC濾波器,則需要對其進行分析,以保證他們能有效抑制新型放大器所產生的高頻開關瞬態(tài)。


PWM型D類放大器

傳統(tǒng)D類放大器通常基于脈寬調制(PWM)原理設計。其輸出可以配置為單端或全差分橋接負載(BTL)。圖1為PWM型D類放大器的典型BTL輸出波形??焖俚那袚Q時間和接近軌至軌的擺幅使此類放大器具有非常高的效率。然而,這些特性使放大器具有寬的輸出頻譜,可能導致高頻RF幅射和干擾。因此,采用此類方案通常需要使用輸出濾波器來抑制有害的RF幅射。


圖1. 傳統(tǒng)脈寬調制(PWM)方案的波形

如圖1所示,如果器件的反相和同相輸出回路具有較高的匹配度,則兩個對稱輸出信號波形在揚聲器或連線上將具有很小的共模(CM)信號(底部的跡線)。注意:50%占空比代表零輸入信號(空閑狀態(tài))。因此,可以設計一個差分低通濾波器,用于衰減信號波形中高頻分量(快速切換所產生的),同時保留有用的低頻分量以輸出到揚聲器。


新一代調制技術

隨著市場對D類放大器需求的不斷增長,一些制造商最近推出了可獨立控制H橋的兩個半橋的新一代調制方案。這一調制方案具有兩個主要優(yōu)點:

音頻信號較弱或空閑狀態(tài)時,負載上幾乎沒有差分開關信號。較傳統(tǒng)PWM設計改進了靜態(tài)電流損耗。

最小脈沖,共模(CM)開關信號有助于降低導通和關斷瞬態(tài)。BTL輸出引腳的空閑狀態(tài)直流電平(濾波后)接近于GND。因此,濾波元件的不匹配或雜散電容(可能導致放大器導通或關斷時出現音頻雜音)可減到最小。

顯然,這一新技術雖具有一些優(yōu)點,但放大器輸出將不再對稱。圖2所示的信號波形(以MAX9704立體聲D類放大器為例)具有較高的共模分量。


圖2. Maxim的MAX9704立體聲D類放大器的調制方案

此類D類放大器對輸出濾波器的要求,不同于具有傳統(tǒng)差分輸入和互補PWM輸出的放大器。與PWM相比,MAX9704調制方案的輸出往往含有較高的共模信號,設計輸出濾波器時需要考慮這點。正如后面的實例所示,傳統(tǒng)差分濾波器拓撲結構的效果往往不太理想。

圖3a給出了傳統(tǒng)的PWM型D類輸出LC濾波器,及其理想值。為簡單起見,可假設揚聲器負載具有理想的8電阻,并且忽略電感的直流阻抗。通過一些簡單的SPICE仿真便可得出問題所在。圖3b給出了圖3a中濾波器對差分輸入信號的頻率響應。給出了兩個輸出結點(FILT1,FILT2)相對于GND的響應曲線。圖中給出的器件值在30kHz的頻率以上具有理想的二階滾降,以及理想的瞬態(tài)。音頻帶內群延遲特性在4μs內保持平坦。


圖3. (a) 傳統(tǒng)的差模無源LC濾波器,(b) 對于差分輸入信號的頻響,(c) 共模信號頻響。

圖3c給出了共模輸入時同一濾波器的輸出。同樣,兩個輸出的響應曲線均相對于GND。輸出結果(Y軸偏移)具有很大的尖峰,并具有明顯的欠阻尼。結合共模信號下濾波器的等效電路(圖4),就很容易理解為什么會出現這一結果。由于仿真時采用理想匹配的電感和電容器,因此阻性負載上差分信號為零,因此不會LC元件不會出現任何衰減。L1與C1諧振(L2與C3同理)產生峰值。在時域內(圖中未顯示),這種情況將會出現較大的過沖和振蕩。注意,輸入共模信號時,C2將引入一個零點。因此濾波器的截止頻率(此時稱作諧振頻率可能更加準確)將高于差分輸入時的截止頻率。


圖4. 共模輸入下,圖3a中傳統(tǒng)LC濾波器的等效電路

這時你或許會問,這樣會有問題么?如果該頻率下輸出頻譜共模能量為零,那么便沒什么問題。然而,如果峰值頻率與D類放大器開關頻率正好相等,則揚聲器和連線上將出現較大的輸出電壓幅度。同時,MAX9704的擴展頻譜調制(SSM)模式將使欠阻尼濾波器在音頻頻帶以上引入相當的噪聲。擴展頻譜模式是引腳可選的,此時高頻開關能量為“白噪聲”,可以通過逐周期隨機調整開關時間降低噪聲幅度。這種擴展頻譜方案簡化了無濾波應用中的EMI兼容性設計。


欠阻尼共模響應問題
針對上述共模問題的解決方案之一是保留圖3a的基本結構,但增加抑制高諧振共模信號的阻尼元件。圖5a給出了在兩個輸出節(jié)點和GND之間串聯(lián)RC元件。如果應用中對效率的要求不是很高,可以在輸出節(jié)點和GND之間僅連接一個電阻,但電容器C4和C5將有助于降低R1和R2上的額外功率損耗。
C4和C5的值應權衡選取:一方面增大C4與C5值有助于R1和R2衰減尖峰,另一方面應減小C4和C5降低高音音頻(高達20kHz)下的損耗。如果共模截止頻率遠大于差模頻率,則很容易進行選擇,例如只需增加C2相對于C1和C3的比率既可實現。增加共模截止頻率,則可減小C4和C5的值,同時增大R1和R2的值,這樣將降低R1和R2上的音頻損耗。若共模截止頻率太高,則電纜上的共模成分就會過多,因此,必須合理選擇差分和共模的-3dB頻點的比率。本案例的濾波器采用了1:5的比率。


圖5. 在傳統(tǒng)LC濾波器的每個輸出端增加一個RC網絡(a),可以改進差分信號的頻響(b)和共模信號的頻響(c)。

圖5b為圖5a濾波器對差分輸入的響應,圖5c為共模輸入的響應。注意:圖5c中共模截止頻率較高(-3dB帶寬約為110kHz,差分輸入為28kHz),帶有平緩且合理控制的尖峰。該截止頻率遠高于最高音頻(也低于D類開關頻率基波),因此具有較好的效果。

有些低開關頻率(200kHz至300kHz)應用不適合采用圖5c所示的方案。對于這類產品可能需要采用其他方法和拓撲結構。MAX9704立體音D類放大器(圖6)可設置為940kHz固定頻率模式(FFM) (FS1 = 低,FS2 = 高),此時效果最佳。工作在FFM模式下的MAX9704通過引腳選擇將開關周期設為恒定值(具有三個可選項),以滿足應用需求。


圖6. MAX9704立體聲D類功率放大器的典型應用電路

圖7和圖8給出使用圖5濾波器對MAX9704進行濾波時的時域性能。兩種情況下負載阻抗均為8。圖7同時顯示了FILT1和FILT2節(jié)點的波形圖(頂部的跡線),以及得的1kHz差分輸出波形(底部的跡線)。頂部跡線的噪聲是輸出開關信號濾波以后的殘余信號(電源電壓為15V)。圖8為圖7跡線的細節(jié)顯示。注意:紋波主要來自940kHz開關頻率,兩通道上表現為共模信號的形式。還應注意輸出上沒有高次諧波,表明有效抑制了EMI (幅射EMI的起始測試頻率通常高于30MHz) 。


圖7. 用MAX9704驅動圖5a電路時FILT1和FILT2上產生的信號波形(同時顯示在頂部的跡線),以及差分輸出(底部的跡線)。

8. 頂部跡線顯示了圖5a電路輸出中殘余的紋波電壓,紋波成分主要為開關頻率基波(此時為940kHz)。濾波器高于該頻點的二階滾降很好的抑制了所有高次諧波。紋波幾乎只有共模分量(底部的跡線)。

關說明

本文討論的濾波器設計均假設負載阻抗為8。音圈電感導致20kHz的頻率范圍內,多數寬范圍動圈揚聲器的阻抗變高。該特性有助于實現高效率的無濾波器工作,但選擇濾波器件以降低EMI時,應考慮阻抗的上升。

試圖評估和描述D類放大器特性時,為了進行器件選型和評估,即便在實驗室環(huán)境下,音頻設計人員也往往需要進行濾波。即使不用濾波器的最終產品能通過EMC測試,仍然可以通過放大器性能測試來發(fā)現問題。許多音頻分析儀是專為測量傳統(tǒng)音頻放大器的THD+N或幅度響應而設計的,當用于測試無濾波D類放大器時往往會出現錯誤。圖5所示電路適合用于測試(正確加載8電阻負載),但需要注意33μH的電感可能引入的非線性將限制了THD測量。氣隙元件往往具有最佳的測量結果,但尺寸往往限制其在實際產品中的應用!

本站聲明: 本文章由作者或相關機構授權發(fā)布,目的在于傳遞更多信息,并不代表本站贊同其觀點,本站亦不保證或承諾內容真實性等。需要轉載請聯(lián)系該專欄作者,如若文章內容侵犯您的權益,請及時聯(lián)系本站刪除。
換一批
延伸閱讀

如果獲批,百悅澤 ®將成為歐盟地區(qū)獲批用于慢性淋巴細胞白血病治療的布魯頓氏酪氨酸激酶(BTK)抑制劑中唯一在頭對頭試驗中較標準治療獲得優(yōu)效性的藥物 憑借較標準治療顯著更低的房顫和房撲發(fā)生率 ...

關鍵字: 神州 BSP EMI CAN

蘇州2022年10月13日 /美通社/ -- 北京時間2022年10月13日,開拓藥業(yè)(股票代碼:9939.HK),一家專注于潛在同類首創(chuàng)和同類最佳創(chuàng)新藥物研發(fā)及產業(yè)化的生物制藥公司,宣布其聯(lián)合美國德克薩斯大學...

關鍵字: 模型 LM EMI PD

上海2022年9月23日 /美通社/ -- 富士膠片株式會社榮譽宣布,在由美國工業(yè)設計師協(xié)會(IDSA)主辦的設計大獎、2022國際設計卓越獎"IDEA獎"(International Design...

關鍵字: EMI IDE 富士 變焦

上海2022年9月21日 /美通社/ -- 因忘帶鑰匙,85歲的媽媽手忙腳亂地從窗口爬進屋子開門,可65歲的女兒還是沒忍住失禁,像小女孩般靠著媽媽茫然哭泣…這是電影《媽媽!》中讓人印象深刻的一幕。電影講述了高齡...

關鍵字: BSP EMI 創(chuàng)始人 MIDDOT

上海 2022年9月14日 /美通社/ -- 9月9日,TUV南德意志集團(以下簡稱"TUV南德")為寶山鋼鐵股份有限公司(以下簡稱"...

關鍵字: 熱鍍鋅 EMI LEM SIMON

電磁干擾 (EMI) - 由源、路徑和受害者組成 - 是電氣和電子系統(tǒng)中的一個問題。一些系統(tǒng)會發(fā)出噪音,而另一些則容易受到噪音的影響,還有一些系統(tǒng)會發(fā)出噪音并受到噪音的影響。然而,可以通過幾家值得信賴的供應商輕松獲得可用...

關鍵字: EMI 噪聲處理

到目前為止,我們已經討論了滿足 EMC 標準所必需的板級 EMI 抑制解決方案。然而,對于封閉系統(tǒng)不能免疫甚至發(fā)射 EMI 的應用,它們可能還不夠。此類應用(包括醫(yī)療、航天、航空航天和其他關鍵任務系統(tǒng))需要盒級 EMI...

關鍵字: EMI 噪聲處理

電磁干擾 (EMI) 是所有電氣和電子電路中的一個問題。這個由六部分組成的系列將討論用于減輕 EMI 噪聲排放的可用組件解決方案;如何使您的電路不易受 EMI 影響;以及針對汽車、醫(yī)療、植入式和空間應用的特定 EMI 考...

關鍵字: EMI 噪聲處理

在惡劣環(huán)境應用中使用的組件通常會承受過大的機械應力、極熱或極冷的溫度、增加的靜電放電潛力和/或高水平的輻射。因此,這些組件采用能夠處理高溫變化的材料制造,并具有機械堅固的結構。例如,陶瓷 NP0/C0G 等電介質能夠處理...

關鍵字: EMI 噪聲處理

南京2022年9月7日 /美通社/ -- 9月2日,TUV南德意志集團(以下簡稱"TUV南德")為國家電網南瑞集團(以下簡稱"南瑞集團"...

關鍵字: 電力行業(yè) 數字化系統(tǒng) EMI LEM

消費電子

96051 篇文章

關注

發(fā)布文章

編輯精選

技術子站

關閉